Part of the male population of the wasp Trichogramma kaykai carries a B chromosome that manipulates its host sex ratio in favour of males. The only known repeat on this paternal sex ratio (PSR) chromosome is the 45S rDNA, which includes here five different internal transcribed spacer 2 (ITS2) sequences. In this report, we describe that only part of these ITS2 sequences is transcribed. The absence of transcription of some ITS2 sequences might explain the presence of multiple ITS2 sequences on the PSR chromosome since homogenization of rDNA spacers is thought to occur only in transcribed regions. Analysis of the only other known tandem repeat in Trichogramma, the EcoRI repeat, showed that it is absent from the PSR chromosome, and that the T. kaykai EcoRI repeat has 98 and 77% DNA sequence homology with the T. deion and T. brassicae EcoRI repeats, respectively. The size of the PSR chromosome measures 9 Mbp and is equal to 3.9% of the haploid T. kaykai genome. Finally, fluorescent in situ hybridization with a pool of high and moderate repetitive T. kaykai DNA (C0t-50) revealed only a very few major tandem repeats on the Trichogramma genome and only 45S rDNA on the PSR chromosome.
BackgroundEukaryote cells are suggested to arise somewhere between 0.85∼2.7 billion years ago. However, in the present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first phagocytotic predators and that they arose only 0.85∼2.7 billion years ago, leads to an unexpected prediction of a long period (∼1–3 billion years) with no phagocytotes – a veritable Garden of Eden.MethodologyWe test whether such a long period is reasonable by simulating a population of very simple unicellular organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger opportunistic or specialized predators.ConclusionsBoth strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.