In this work we summarize the recent activities of our group regarding the analytical performance of a new composite material, the so-called carbon nanotubes paste electrode (CNTPE) obtained by dispersion of multiwall carbon nanotubes in mineral oil. The electrocatalytic properties towards different redox systems, especially those involved in important enzymatic reactions are discussed. Significant shifting in the overpotentials for the oxidation and/or reduction of hydrogen peroxide, NADH, phenol, catechol, dopamine, ascorbic acid, uric acid and hydroquinone are obtained at CNTPE in comparison with the analogous graphite paste electrode (CPE). The usefulness of the electrode as a matrix for immobilizing enzymes is also demonstrated. Highly sensitive and selective glucose quantification is accomplished even without using permselective films or redox mediators. Enzymatic biosensors obtained by incorporation of lactate oxidase, polyphenol oxidase and alcohol dehydrogenase/NAD þ within the composite material have allowed the successful quantification of lactate, phenol, dopamine, catechin and ethanol. The sensitive quantification of traces of oligonucleotides and double stranded calf thymus DNA by adsorptive stripping is reported. The confined DNA layer demonstrated to be stable either in air, acetate or phosphate buffer. The advantages of incorporating copper particles for the quantification of amino acids and albumin is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.