Although many algorithms have been designed to construct Bayesian network structures using different approaches and principles, they all employ only two methods: those based on independence criteria, and those based on a scoring function and a search procedure (although some methods combine the two). Within the score+search paradigm, the dominant approach uses local search methods in the space of directed acyclic graphs (DAGs), where the usual choices for defining the elementary modifications (local changes) that can be applied are arc addition, arc deletion, and arc reversal. In this paper, we propose a new local search method that uses a different search space, and which takes account of the concept of equivalence between network structures: restricted acyclic partially directed graphs (RPDAGs). In this way, the number of different configurations of the search space is reduced, thus improving efficiency. Moreover, although the final result must necessarily be a local optimum given the nature of the search method, the topology of the new search space, which avoids making early decisions about the directions of the arcs, may help to find better local optima than those obtained by searching in the DAG space. Detailed results of the evaluation of the proposed search method on several test problems, including the well-known Alarm Monitoring System, are also presented.
In this article a new probabilistic information retrieval (IR) model, based on Bayesian networks (BNs), is proposed. We first consider a basic model, which represents only direct relationships between the documents in the collection and the terms or keywords used to index them. Next, we study two versions of an extended model, which also represents direct relationships between documents. In either case the BNs are used to compute efficiently, by means of a new and exact propagation algorithm, the posterior probabilities of relevance of the documents in the collection given a query. The performance of the proposed retrieval models is tested through a series of experiments with several standard document collections.
Abstract. There is a commonly held opinion that the algorithms for learning unrestricted types of Bayesian networks, especially those based on the score+search paradigm, are not suitable for building competitive Bayesian network-based classifiers. Several specialized algorithms that carry out the search into different types of directed acyclic graph (DAG) topologies have since been developed, most of these being extensions (using augmenting arcs) or modifications of the Naive Bayes basic topology. In this paper, we present a new algorithm to induce classifiers based on Bayesian networks which obtains excellent results even when standard scoring functions are used. The method performs a simple local search in a space unlike unrestricted or augmented DAGs. Our search space consists of a type of partially directed acyclic graph (PDAG) which combines two concepts of DAG equivalence: classification equivalence and independence equivalence. The results of exhaustive experimentation indicate that the proposed method can compete with state-of-the-art algorithms for classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.