Background Perhaps reflecting that children with COVID-19 rarely exhibit severe respiratory symptoms and often remain asymptomatic, little attention has been paid to explore the immune response in pediatric COVID-19. Here, we analyzed the phenotype and function of circulating neutrophils from children with COVID-19. Methods An observational study including 182 children with COVID-19, 21 children with multisystem inflammatory syndrome (MIS-C), and 40 healthy children was performed in Buenos Aires, Argentina. Neutrophil phenotype was analyzed by flow cytometry in blood samples. Cytokine production, plasma levels of IgG antibodies directed to the spike protein of SARS-CoV-2 and citrullinated histone H3 were measured by ELISA. Cell-free DNA was quantified by fluorometry. Findings Compared with healthy controls, neutrophils from children with COVID-19 showed a lower expression of CD11b, CD66b, and L -selectin but a higher expression of the activation markers HLA-DR, CD64 and PECAM-1 and the inhibitory receptors LAIR-1 and PD-L1. No differences in the production of cytokines and NETs were observed. Interestingly, the expression of CD64 in neutrophils and the serum concentration of IgG antibodies directed to the spike protein of SARS-CoV-2 distinguished asymptomatic from mild and moderate COVID-19. Interpretation Acute lung injury is a prominent feature of severe COVID-19 in adults. A low expression of adhesion molecules together with a high expression of inhibitory receptors in neutrophils from children with COVID-19 might prevent tissue infiltration by neutrophils preserving lung function. Funding This study was supported by the Ministry of Science and Technology (National Agency for Scientific and Technological Promotion, IP-COVID-19-0277 and PMO BID PICT 2018-2548), and University of Buenos Aires from Argentina (20020170100573BA).
Background: Perhaps reflecting that children with COVID-19 rarely exhibit severe respiratory symptoms and often remain asymptomatic, little attention has been paid to explore the immune response in pediatric COVID-19. Here, we analyzed the phenotype and function of circulating neutrophils from children with COVID-19. Methods: An observational study including 182 children with COVID-19, 21 children with multisystem inflammatory syndrome (MIS-C), and 40 healthy children was performed in Buenos Aires, Argentina. Neutrophil phenotype was analyzed by flow cytometry in blood samples. Cytokine production, plasma levels of IgG antibodies directed to the spike protein of SARS-CoV-2 and citrullinated histone H3 were measured by ELISA. Cell-free DNA was quantified by fluorometry. Findings: Compared with healthy controls, neutrophils from children with COVID-19 showed a lower expression of CD11b, CD66b, and L-selectin but a higher expression of the activation markers HLA-DR, CD64 and PECAM-1 and the inhibitory receptors LAIR-1 and PD-L1. No differences in the production of cytokines and NETs were observed. Interestingly, the expression of CD64 in neutrophils and the serum concentration of IgG antibodies directed to the spike protein of SARS-CoV-2 distinguished asymptomatic from mild and moderate COVID-19. Interpretation: Acute lung injury is a prominent feature of severe COVID-19 in adults. A low expression of adhesion molecules together with a high expression of inhibitory receptors in neutrophils from children with COVID-19 might prevent tissue infiltration by neutrophils preserving lung function.
Severe COVID-19 in children is rare, but the reasons underlying are unclear. Profound alterations in T cell responses have been well characterized in the course of adult severe COVID-19, but little is known about the T cell function in children with COVID-19. Here, we made three major observations in a cohort of symptomatic children with acute COVID-19: 1) a reduced frequency of circulating FoxP3+ regulatory T cells, 2) the prevalence of a TH17 polarizing microenvironment characterized by high plasma levels of IL-6, IL-23, and IL17A, and an increased frequency of CD4+ T cells expressing ROR-γt, the master regulator of TH17 development, and 3) high plasma levels of ATP together with an increased expression of the P2X7 receptor. Moreover, that plasma levels of ATP displayed an inverse correlation with the frequency of regulatory T cells but a positive correlation with the frequency of CD4+ T cells positive for the expression of ROR-γt. Collectively, our data indicate an imbalance in CD4+ T cell profiles during pediatric COVID-19 that might favor the course of inflammatory processes. This finding also suggests a possible role for the extracellular ATP in the acquisition of an inflammatory signature by the T cell compartment offering a novel understanding of the involved mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.