A series of polyfluorene-based polymers with a range of weight percentages (w/w) of a platinum(II)-containing porphyrin, 5,15-dimesityl-10,20-diphenylporphyrinato platinum(II) (MPP(Pt)), were synthesised and incorporated into organic lightemitting diodes. All polymers showed emission predominantly in the red/NIR region with only those polymers with porphyrin w/w of less than 2% showing residual tails at wavelengths lower than 600 nm, indicating increased emission from the porphyrin as w/w increases. The 2% loading of MPP(Pt) gave the highest efficiency LED (0.48%) and light output (2630 mW/m 2 ).
The use of additive manufacturing (AM), for example Selective Laser Melting (SLM), is poised to spark a revolution in the way high-temperature components for gas turbines are designed, but a number of grave uncertainties remain. These lie mainly with the materials sciences, but some questions with regard to manufacturing and operating SLM-parts as hot gas path components and the demands on the tolerances of the cooling features associated therewith remain as well. In order to quantify the impact of these uncertainties, Nozzle Guide Vanes (NGVs) with a geometry that would normally be investment-cast were produced with SLM. A back-to-back comparison of vanes from the two manufacturing processes was performed. The design of the SLM-vanes will be described and the SLMmanufacturing process of the NGVs will be touched upon, especially the use of MAR M-509, which is seldom used for SLM. In addition, characterization of the NGVs with 3D-scans of the outer geometry and the pin-fin matrix shall be discussed. The NGVs were operated for approximately 70 hours at relevant load conditions in a highly-instrumented test engine on a test bed at the Oberhausen plant of MAN. The temperatures of the AM and investment-cast vanes were measured using Thermal History Paints (THPs); a comparison between these different kinds of parts will be drawn.
Environmental requirements to reduce CO2 emissions and the drive towards higher efficiencies have resulted in increased operating temperatures in gas turbines. Subsequently, Original Equipment Manufacturer (OEMs) require improved component design and material selection to withstand the harsher conditions. This demands rapid evaluation of new components and their surface temperature to accelerate their market entry. Accurate temperature information proves key in the design of more efficient, longer-lasting machinery and in monitoring thermal damage. A number of traditional temperature measurement techniques are available, but can incur a number of limitations. Online temperature measurements, such as pyrometry or phosphor thermography, often require optical access to the component during operation and are therefore not suitable for inaccessible components. Other options including thermocouples can only provide point measurements and cannot deliver profiles across the surface. Offline techniques store temperature information that can be measured and analysed following operation. Several of these, however, are of destructive nature, can affect local thermal gradients and only provide point measurements. This article discusses an innovative offline measurement technique: luminescent Thermal History Paints (THPs). THPs are comprised of ceramic pigments in a binder matrix that can be applied to any hot component as a thin coating. These pigments are doped with optically active ions, which will phosphoresce when excited with a light source. The coating material experiences irreversible structural changes depending on the temperature it is exposed to. Changes in the material structure are reflected in its phosphorescent properties, which are measured with standard optical instrumentation at any surface location. Since the changes are permanent, the temperature information is stored in the coating and can be extracted after operation. Following calibration, it is therefore possible to relate phosphorescent behaviour to the past maximum temperature experienced at each location. This is done with Sensor Coating Systems Ltd. (SCS)’s portable instrumentation, which can provide rapid, automated and objective measurements across a component surface. Unlike the more traditional thermal paints, THPs are non-toxic, and provide a continuous measurement capability across the range 150°C–900°C with significantly improved durability. This article describes the underlying principles behind this novel technology and the advantages it provides over existing state-of-the-art methods. The benefits will be demonstrated through measurements on nozzle guide vanes (NGVs), with the view to compare and validate them against thermocouple measurements. The results show that the THP extends the limited information from thermocouples to provide a more complete view of the thermal processes on the component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.