The peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes. FTIR and H NMR spectroscopy studies underlined the pivotal role of hydrogen bonding in the gelation process, and electronic paramagnetic resonance (EPR) measurements unraveled the advantage of preorganized CT supramolecular architectures for charge transport over solutions containing non-coassembled D and A molecular systems.
Two pyrene based organogelators in which the pyrene moiety has been linked to the diphenylalanine dipeptide have been synthesized. We show how the solvent can tune both the morphology and the optical properties of the organogels: spherical aggregates with quenched emission were obtained in acetonitrile, whereas an entangled fibrillar network with enhanced emission was formed in o-dichlorobenzene. Fourier transform infrared spectroscopy, circular dichroism and nuclear magnetic resonance spectroscopy experiments suggest that both π-π stacking and hydrogen bonding contribute to the formation of the supramolecular networks. Ultraviolet-visible and steady state emission studies demonstrated the formation of I-aggregates in acetonitrile. In contrast, in o-dichlorobenzene, the formation of J-type aggregates leads to assemblies with enhanced emission. These results give some insight into the important role of the gelling solvent in the morphology of the supramolecular gels and may help in the design of new soft-materials.
The development of heteroditopic receptor systems that can simultaneously bind cationic and anionic species is one of the most challenging research topics in supramolecular chemistry, attracting the attention of a large number of research groups worldwide. Such an interest is due especially to the fact that the overall receptor–ion-pair complex is neutral and this can be advantageous in many situations, such as salt solubilization and extraction, and membrane-transport applications. Receptors designed for ion-pair complexation are molecules comprising well-known anion-binding motifs and familiar cation-binding sites. An important family of compounds that can use metal Lewis-acidic centres for anion recognition and that can be easily derivatized to introduce an additional binding site for the cation is metal–salophen and metal–salen complexes. This short review shows that the high versatility of salen and salophen ligands and of the corresponding metal complexes allows, through simple modifications of the basic skeleton, the obtention of highly efficient receptors for ion pairs.
The synthesis and characterization of two new uranyl-salen complexes, 1-2, based on a 1,2diaminomaleonitrile unit, is described. Spectroscopic studies to evaluate their potential as colorimetric probes for fluoride detection in chloroform and dichloromethane were undertaken. Compound 2 exhibits a 'turn-on' response characterized by a naked-eye colorimetric change for the selective recognition of fluoride in both solvents. DFT calculations show that the stabilization energy for the formation of the host:guest complex follows the trend F-> Cl-> Brhence supporting the experimental data.
Solubilization of [60]fullerene in water is a major challenge for biological and medical applications. To this purpose in this communication we describe for the first time a new dispersing system based on a peptide topological template. The presence of two carbobenzyloxy groups on the peptide side chains allows π-π interactions with [60]fullerene leading to the formation of stable supramolecular nanocomposites by means of mechanochemical methods. In particular, by high speed vibration milling colloidal dispersions (mean particle diameter 63 nm) containing up to 1.3 mg mL(-1) of [60]fullerene were obtained. Its presence in water was verified through UV-Vis and MALDI-TOF measurements, while its concentration was determined by thermogravimetric analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.