We present a linear time algorithm to greedily orient the edges of a path graph model to obtain a directed path graph model (when possible). Moreover we extend this algorithm to find an odd sun when the method fails. This algorithm has several interesting consequences concerning the relationship between path graphs and directed path graphs. One is that for a directed path graph, path graph models and directed path graph models are the same. Another consequence concerns the difference between path graphs and directed path graphs in terms of forbidden induced subgraphs. This can be used to deduce the forbidden induced subgraph characterization of directed path graphs from the forbidden induced subgraph characterization of path graphs. The last consequence is algorithmic and shows that the recognition of directed path graphs is not more difficult than the recognition of path graphs.
International audienceA directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple
In this paper we study domination between different types of walks connecting two non-adjacent vertices of a graph. In particular, we center our attention on weakly toll walk and l k -path for k ∈ {2, 3}. A walk between two non-adjacent vertices in a graph G is called a weakly toll walk if the first and the last vertices in the walk are adjacent, respectively, only to the second and second-to-last vertices, which may occur more than once in the walk. And an l k -path is an induced path of length at most k between two nonadjacent vertices in a graph G. We study the domination between weakly toll walks, l k -paths (k ∈ {2, 3}) and different types of walks connecting two non-adjacent vertices u and v of a graph (shortest paths, induced paths, paths, tolled walks, weakly toll walks, l k -paths for k ∈ {3, 4}), and show how these give rise to characterizations of graph classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.