Predicting the difference in thermodynamic stability between protein variants is crucial for protein design and understanding the genotype-phenotype relationships. So far, several computational tools have been created to address this task. Nevertheless, most of them have been trained or optimized on the same and ‘all’ available data, making a fair comparison unfeasible. Here, we introduce a novel dataset, collected and manually cleaned from the latest version of the ThermoMutDB database, consisting of 669 variants not included in the most widely used training datasets. The prediction performance and the ability to satisfy the antisymmetry property by considering both direct and reverse variants were evaluated across 21 different tools. The Pearson correlations of the tested tools were in the ranges of 0.21–0.5 and 0–0.45 for the direct and reverse variants, respectively. When both direct and reverse variants are considered, the antisymmetric methods perform better achieving a Pearson correlation in the range of 0.51–0.62. The tested methods seem relatively insensitive to the physiological conditions, performing well also on the variants measured with more extreme pH and temperature values. A common issue with all the tested methods is the compression of the $\Delta \Delta G$ predictions toward zero. Furthermore, the thermodynamic stability of the most significantly stabilizing variants was found to be more challenging to predict. This study is the most extensive comparisons of prediction methods using an entirely novel set of variants never tested before.
The prediction of free energy changes upon protein residue variations is an important application in biophysics and biomedicine. Several methods have been developed to address this problem so far, including physical-based and machine learning models. However, most of the current computational tools, especially data-driven approaches, fail to incorporate the antisymmetric basic thermodynamic principle: a variation from wild-type to a mutated form of the protein structure ( X W → X M ) and its reverse process ( X M → X W ) must have opposite values of the free energy difference: Δ Δ G W M = − Δ Δ G M W . Here, we build a deep neural network system that, by construction, satisfies the antisymmetric properties. We show that the new method (ACDC-NN) achieved comparable or better performance with respect to other state-of-the-art approaches on both direct and reverse variations, making this method suitable for scoring new protein variants preserving the antisymmetry. The code is available at: https://github.com/compbiomed-unito/acdc-nn.
Estimating the functional effect of single amino acid variants in proteins is fundamental for predicting the change in the thermodynamic stability, measured as the difference in the Gibbs free energy of unfolding, between the wild-type and the variant protein (ΔΔG). Here, we present the web-server of the DDGun method, which was previously developed for the ΔΔG prediction upon amino acid variants. DDGun is an untrained method based on basic features derived from evolutionary information. It is antisymmetric, as it predicts opposite ΔΔG values for direct (A → B) and reverse (B → A) single and multiple site variants. DDGun is available in two versions, one based on only sequence information and the other one based on sequence and structure information. Despite being untrained, DDGun reaches prediction performances comparable to those of trained methods. Here we make DDGun available as a web server. For the web server version, we updated the protein sequence database used for the computation of the evolutionary features, and we compiled two new data sets of protein variants to do a blind test of its performances. On these blind data sets of single and multiple site variants, DDGun confirms its prediction performance, reaching an average correlation coefficient between experimental and predicted ΔΔG of 0.45 and 0.49 for the sequence-based and structure-based versions, respectively. Besides being used for the prediction of ΔΔG, we suggest that DDGun should be adopted as a benchmark method to assess the predictive capabilities of newly developed methods. Releasing DDGun as a web-server, stand-alone program and docker image will facilitate the necessary process of method comparison to improve ΔΔG prediction.
Several studies have linked disruptions of protein stability and its normal functions to disease. Therefore, during the last few decades, many tools have been developed to predict the free energy changes upon protein residue variations. Most of these methods require both sequence and structure information to obtain reliable predictions. However, the lower number of protein structures available with respect to their sequences, due to experimental issues, drastically limits the application of these tools. In addition, current methodologies ignore the antisymmetric property characterizing the thermodynamics of the protein stability: a variation from wild-type to a mutated form of the protein structure (XW → XM) and its reverse process (XM → XW) must have opposite values of the free energy difference (ΔΔGWM = – ΔΔGMW). Here we propose ACDC-NN-Seq, a deep neural network system that exploits the sequence information and is able to incorporate into its architecture the antisymmetry property. To our knowledge, this is the first convolutional neural network} to predict protein stability changes relying solely on the protein sequence. We show that ACDC-NN-Seq compares favorably with the existing sequence-based methods.
Predictions are fundamental in science as they allow to test and falsify theories. Predictions are ubiquitous in bioinformatics and also help when no first principles are available. Predictions can be distinguished between classifications (when we associate a label to a given input) or regression (when a real value is assigned). Different scores are used to assess the performance of regression predictors; the most widely adopted include the mean square error, the Pearson correlation (ρ), and the coefficient of determination (or [Formula: see text]). The common conception related to the last 2 indices is that the theoretical upper bound is 1; however, their upper bounds depend both on the experimental uncertainty and the distribution of target variables. A narrow distribution of the target variable may induce a low upper bound. The knowledge of the theoretical upper bounds also has 2 practical applications: (1) comparing different predictors tested on different data sets may lead to wrong ranking and (2) performances higher than the theoretical upper bounds indicate overtraining and improper usage of the learning data sets. Here, we derive the upper bound for the coefficient of determination showing that it is lower than that of the square of the Pearson correlation. We provide analytical equations for both indices that can be used to evaluate the upper bound of the predictions when the experimental uncertainty and the target distribution are available. Our considerations are general and applicable to all regression predictors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.