A possible approach for enhancement of Poly(vinyl alcohol) (PVA) humidity-sensing performance using hydrophobically modified PVA copolymers is studied. Series of poly(vinylalcohol-co-vinylacetal)s (PVA–Ac) of acetal content in the range 18%–28% are synthesized by partial acetalization of hydroxyl groups of PVA with acetaldehyde and thin films are deposited by spin-coating using silicon substrates and glass substrates covered with Au–Pd thin film with thickness of 30 nm. Sensing properties are probed through reflectance measurements at relative humidity (RH) in the range 5%–95% RH. The influence of film thickness, post-deposition annealing temperature, and substrate type/configuration on hysteresis, sensitivity, and accuracy/resolution of humidity sensing is studied for partially acetalized PVA copolymer films, and comparison with neat PVA is made. Enhancement of sensing behavior through preparation of polymer–silica hybrids is demonstrated. The possibility of color sensing is discussed.
The optical and humidity-sensing properties are studied of hydrophobically modified PVA, namely poly(vinyl alcohol-co-vinyl acetal)s of varied copolymer composition. Copolymers are synthesized by reacting PVA with acetaldehyde in aqueous solution, thus introducing cyclic acetal functionalities in the polymer chain. Thin polymer films are deposited by spin-coating and their optical properties are studied as a function of the copolymer composition, i.e., degree of acetalization. Reflectance measurements at different relative humidities in the range 5 – 95 % RH are conducted in order to probe the sensing behavior. The comparison with neat PVA thin films confirms the influence of the copolymer’s acetal fraction on the optical and sensing properties and degree of hysteresis. The feasibility of applying poly(vinyl alcohol-co-vinyl acetal) thin films for optical sensing of humidity is demonstrated and discussed.
Thin spin-coated polymer films of amphiphilic copolymer obtained by partial acetalization of poly (vinyl alcohol) are used as humidity-sensitive media. They are deposited on polymer substrate (PET) in order to obtain a flexible humidity sensor. Pre-metallization of substrate is implemented for increasing the optical contrast of the sensor, thus improving the sensitivity. The morphology of the sensors is studied by surface profiling, while the transparency of the sensor is controlled by transmittance measurements. The sensing behavior is evaluated through monitoring of transmittance values at different levels of relative humidity gradually changing in the range 5–95% and the influence of up to 1000 bending deformations is estimated by determining the hysteresis and sensitivity of the flexible sensor after each set of deformations. The successful development of a flexible sensor for optical monitoring of humidity in a wide humidity range is demonstrated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.