The occurrence of culturable yeasts in glacial meltwater from the Frías, Castaño Overo and Río Manso glaciers, located on Mount Tronador in the Nahuel Huapi National Park (Northwestern Patagonia, Argentina) is presented. Subsurface water samples were filtered for colony counting and yeast isolation. The total yeast count ranged between 6 and 360 CFU L(-1). Physiologic and molecular methods were employed to identify 86 yeast isolates. In agreement with yeast diversity data from studies for Antarctic and Alpine glaciers, the genera Cryptococcus, Leucosporidiella, Dioszegia, Rhodotorula, Rhodosporidium, Mrakia, Sporobolomyces, Udeniomyces and Candida were found. Cryptococcus and Leucosporidiella accounted for 50% and 20% of the total number of strains, respectively. Among 21 identified yeast species, Cryptococcus sp. 1 and Leucosporidiella fragaria were the most frequent. The typically psychrophilic Mrakia yeast strain and three new yeast species, yet to be described, were also isolated. All yeast strains were able to grow at 5, 10, and 15 degrees C. Among yeast strains expressing extracellular enzymatic activity, higher proteolytic and lipolytic activities were obtained at 4 degrees C than at 20 degrees C.
Twelve yeasts isolated from lakes of Northwestern Patagonia, Argentina, belonging to eight genera (Sporobolomyces, Sporidiobolus, Rhodotorula, Rhodosporidium, Cystofilobasidium, Cryptococcus, Torulaspora, and Candida) were analysed for their ability to produce photoprotective compounds. For this purpose, three laboratory experiments were performed to study the effect of photosynthetically active radiation (PAR) and PAR in combination with UV radiation (PAR + UVR) on the production of carotenoids and mycosporines. The synthesis of carotenoid compounds was clearly stimulated in six out of nine red yeast strains tested upon exposure to PAR or PAR + UVR; however, the latter conditions produced a stronger response than PAR alone. The increase in carotenoids in the red strains under PAR + UVR irradiation showed a negative exponential relationship with their basal carotenoid content, suggesting that cells with higher constitutive levels of carotenoids are less responsive to induction by PAR + UVR. Three red yeasts, Rhodotorula minuta, Rh. pinicola, and Rhodotorula sp., and the colourless Cryptococcus laurentii produced a UV-absorbing compound when exposed to PAR or PAR + UVR. This compound showed an absorption maximum at 309-310 nm and was identified as mycosporine-glutaminol-glucoside (myc-glu-glu). In these strains, exposure to PAR or PAR + UVR resulted in elevated concentrations of both carotenoids and myc-glu-glu. This is the first report on the production of mycosporines by yeasts. All strains that developed under PAR + UVR were able to synthesise carotenoids either constitutively or in response to PAR exposure, and a few of them also produced myc-glu-glu when exposed to PAR. Collectively, our results suggest that the presence of carotenoids, either alone or in combination with mycosporines, are required for sustaining growth under exposure to PAR + UVR in the freshwater yeast strains studied.
As part of a project aimed at the selection of cold-adapted yeasts expressing biotechnologically interesting features, the extracellular enzymatic activity (EEA) of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina) was investigated. Ninety-one basidiomycetous yeasts (belonging to the genera Cryptococcus, Leucosporidiella, Dioszegia, Mrakia, Rhodotorula, Rhodosporidium, Sporobolomyces, Sporidiobolus, Cystofilobasidium, and Udeniomyces) were screened for extracellular amylolytic, proteolytic, lipolytic, esterasic, pectinolytic, chitinolytic, and cellulolytic activities. Over 15% of the strains exhibited three or more different EEAs at 4 degrees C and more than 63% had at least two EEAs at the same temperature. No chitinolytic or cellulolytic activities were detected at 4 and 20 degrees C. Cell-free supernatants exhibited significantly higher (P < 0.01) protease and lipase activities at < or = 10 degrees C, or even at 4 degrees C. In light of these findings, cold environments of Patagonia (Argentina) may be considered a potential source of cold-adapted yeasts producing industrially relevant cold-active enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.