A large number of observations point towards cytokines, polypeptides released mainly by immune cells, as the molecules responsible for the metabolic derangements associated with cancer-bearing states. Indeed, these alterations lead to a pathological state known as cancer cachexia which is, unfortunately, one of the worst effects of malignancy, accounting for nearly a third of cancer deaths. It is characterized by weight loss together with anorexia, weakness, anemia, and asthenia. The complications associated with the appearance of the cachectic syndrome affect both the physiological and biochemical balance of the patient and have effects on the efficiency of the anticancer treatment, resulting in a considerably decreased survival time. At the metabolic level, cachexia is associated with loss of skeletal muscle protein together with a depletion of body lipid stores. The cachectic patient, in addition to having practically no adipose tissue, is basically subject to an important muscle wastage manifested as an excessive nitrogen loss. The metabolic changes are partially mediated by alterations in circulating hormone concentrations (insulin, glucagon, and glucocorticoids in particular) or in their effectiveness. The present study reviews the involvement of different cytokines in the metabolic and physiological alterations associated with tumor burden and cachexia. Among these cytokines, some can be considered as procachectic (such as tumor necrosis factor-␣), while others having opposite effects can be named as anticachectic cytokines. It is the balance between these two cytokine types that finally seems to have a key role in cancer cachexia.
Although the search for the cachectic factor(s) started a long time ago, and although many scientific and economic efforts have been devoted to its discovery, we are still a long way from knowing the whole truth. A lot of progress has been made, however, in understanding the role of different cytokines - tumor necrosis factor and IL-6 in particular - in muscle wasting associated with cancer cachexia, perhaps the most paradigmatic feature of this complex syndrome.
Tumor necrosis factor-alpha (TNF-alpha) is a cytokine involved in the physiological and metabolic abnormalities found in cachectic states. Until very recently, it was inconceivable to think of TNF-alpha in obesity. However, recent studies have shown that TNF-alpha can also play a key role in obesity, the cytokine being overexpressed in adipose tissue of obese rodents and humans. The aim of this review is to reconcile the role of TNF-alpha in these two opposite metabolic situations: obesity and cachexia. It is suggested that TNF-alpha may have a key role in the control of body mass in normal weight-controlled situations and that abnormalities in either its production (during cachexia) or action (during obesity) are responsible for the lack of control of body weight.
The intramuscular ATP-dependent ubiquitin (Ub)-proteasome proteolytic system is hyperactivated in experimental cancer cachexia. The present study aimed at verifying whether the expression of the muscle Ub mRNA is altered in patients with cancer. Total muscle RNA was extracted using the guanidinium isothiocyanate/phenol/chloroform method from rectus abdominis biopsies obtained intraoperatively from 20 gastric cancer (GC) patients and 10 subjects with benign abdominal diseases (CON) undergoing surgery. Ub mRNA levels were measured by northern blot analysis. Serum soluble tumor necrosis factor receptor (sTNFR) was measured by ELISA. Ub mRNA levels (arbitrary units, means +/- SD) were 2,345 +/- 195 in GC and 1,162 +/- 132 in CON (P = 0.0005). Ub mRNA levels directly correlated with disease stage (r = 0.608, P = 0.005), being 1,945 +/- 786 in stages I and II, 2,480 +/- 650 in stage III, and 3,799 +/- 66 in stage IV. Ub mRNA and sTNFR did not correlate with age and nutritional parameters. This study confirms experimental data indicating an overexpression of muscle Ub mRNA in cancer cachexia. Lack of correlation with nutritional status suggests that Ub activation in human cancer is an early feature that precedes any clinical sign of cachexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.