Granular Computing is an emerging conceptual and computing paradigm of information processing. A central notion is an information-processing pyramid with different levels of clarifications. Each level is usually represented by 'chunks' of data or granules, also known as information granules. Rough Set Theory is one of the most widely used methodologies for handling or defining granules. Ontologies are used to represent the knowledge of a domain for specific applications. A challenge is to define semantic knowledge at different levels of human-depending detail. In this paper we prose four operations in order to have several granular perspectives for a specific ontological commitment. Then these operations are used to have various views of an ontology built with a rough-set approach. In particular, a rough methodology is introduced to construct a specific granular view of an ontology.
This article shows how a fuzzy ontology-based approach can improve semantic documents retrieval. After formally defining a fuzzy ontology and a fuzzy knowledge base, a special type of new fuzzy relationship called (semantic) correlation, which links the concepts or entities in a fuzzy ontology, is discussed. These correlations, first assigned by experts, are updated after querying or when a document has been inserted into a database. Moreover, in order to define a dynamic knowledge of a domain adapting itself to the context, it is shown how to handle a tradeoff between the correct definition of an object, taken in the ontology structure, and the actual meaning assigned by individuals. The notion of a fuzzy concept network is extended, incorporating database objects so that entities and documents can similarly be represented in the network. Information retrieval (IR) algorithm, using an object-fuzzy concept network (O-FCN), is introduced and described. This algorithm allows us to derive a unique path among the entities involved in the query to obtain maxima semantic associations in the knowledge domain. Finally, the study has been validated by querying a database using fuzzy recall, fuzzy precision, and coefficient variant measures in the crisp and fuzzy cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.