Background Developmental brain tumors harboring BRAF V600E somatic mutation are diverse. Here, we describe molecular factors that determine BRAF V600E-induced tumor biology and function. Methods Intraventricular in utero electroporation in combination with the piggyBac transposon system was utilized to generate developmental brain neoplasms, which were comprehensively analyzed with regard to growth using near-infrared in vivo imaging, transcript signatures by RNA sequencing, and neuronal activity by multielectrode arrays. Results BRAF V600E expression in murine neural progenitors elicits benign neoplasms composed of enlarged dysmorphic neurons and neoplastic astroglia recapitulating ganglioglioma (GG) only in concert with active Akt/mTOR-signaling. Purely glial tumors resembling aspects of polymorphous low-grade neuroepithelial tumors of the young (PLNTYs) emerge from BRAF V600E alone. Additional somatic Trp53-loss is sufficient to generate anaplastic GGs (aGGs) with glioneuronal clonality. Functionally, only BRAF V600E/pAkt tumors intrinsically generate substantial neuronal activity and show enhanced relay to adjacent tissue conferring high epilepsy propensity. In contrast, PLNTY- and aGG-models lack significant spike activity, which appears in line with the glial differentiation of the former and a dysfunctional tissue structure combined with reduced neuronal transcript signatures in the latter. Conclusion mTOR-signaling and Trp53-loss critically determine the biological diversity and electrical activity of BRAF V600E-induced tumors.
The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ! third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.
Emerging evidence emphasizes the prognostic importance of meningioma location. The present investigation evaluates whether progression-free survival (PFS), proliferative potential, World Health Organization (WHO) grades, and inflammatory burden differ between anatomical locations (skull base, non-skull base, and spinal) meningiomas. Five-hundred-forty-one patients underwent Simpson grade I or II resection for WHO grade 1 or 2 meningiomas. Univariable analysis revealed that spinal meningioma patients are significantly older, had a worse baseline Karnofsky Performance Status (KPS), higher acute-phase protein levels, lower incidence of WHO grade 2, lower mitotic counts, lower MIB-1 index, and less CD68+ macrophage infiltrates. Multivariable analysis identified WHO grade 2 (OR: 2.1, 95% CI: 1.1–3.7, p = 0.02) and cranial location (OR: 3.0, 95% CI: 1.8–4.9, p = 0.001) as independent predictors of diffuse CD68+ macrophage infiltrates. The mean PFS in cranial meningiomas was 115.9 months (95% CI: 107.5–124.3), compared to 162.2 months (95% CI: 150.5–174.0; log-rank test: p = 0.02) in spinal meningiomas. Multivariable Cox regression analysis revealed cranial location as an independent predictor (HR: 4.7, 95% CI: 1.0–21.3, p = 0.04) of shortened PFS. Increased MIB-1 indices ≥5% were significantly associated with location-specific deficits at presentation, such as decreased vision and seizure burden. Spinal meningiomas have a significantly longer PFS time and differ from the cranial meningiomas regarding MIB-1 index and density of tumor-associated macrophages.
Objective Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including interleukin 1 beta has been observed in brain tissue samples of patients with pharmacoresistant temporal lobe epilepsy (TLE) and corresponding animal models. The NLRP3-inflammasome, a cytosolic protein complex, acts as a key regulator in proinflammatory innate immune signalling. Upon activation, it leads to the release of interleukin 1 beta and inflammation-mediated neurodegeneration. Transient brain insults, like status epilepticus (SE), can render hippocampi chronically hyperexcitable and induce segmental neurodegeneration. The underlying mechanisms are referred to as epileptogenesis. Here, we have tested the hypothesis that distinct NLRP3-dependent transcript and protein signalling dynamics are induced by SE and whether they differ between two classical SE models. We further correlated the association of NLRP3-related transcript abundance with convulsive activity in human TLE hippocampi of patients with and without associated neurodegenerative damage. Methods Hippocampal mRNA- and protein-expression of NLRP3 and associated signalling molecules were analysed longitudinally in pilocarpine- and kainic acid-induced SE TLE mouse models. Complementarily, we studied NLRP3 inflammasome-associated transcript patterns in epileptogenic hippocampi with different damage patterns of pharmacoresistant TLE patients that had undergone epilepsy surgery for seizure relief. Results Pilocarpine- and kainic acid-induced SE elicit distinct hippocampal Nlrp3-associated molecular signalling. Transcriptional activation of NLRP3 pathway elements is associated with seizure activity but independent of the particular neuronal damage phenotype in KA-induced and in human TLE hippocampi. Significance These data suggest highly dynamic inflammasome signalling in SE-induced TLE and highlight a vicious cycle associated with seizure activity. Our results provide promising perspectives for the inflammasome signalling pathway as a target for anti-epileptogenic and -convulsive therapeutic strategies. The latter may even applicable to a particularly broad spectrum of TLE patients with currently pharmacoresistant disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.