On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF).Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims. The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods. As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomeroriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results. The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in European VLBI Network (EVN) and Large European Array for Pulsars (LEAP) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following year, and was concluded with the first call for shared-risk early-science observations issued at the end of 2015. As discussed in the paper, the SRT capabilities were tested (and optimized when possible) for several different observing modes: imaging, spectroscopy, pulsar timing, and transients.
We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000−7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 o ×1 o centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 ′ were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t syn ≃ 267 ± 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M = v gal /c s = 1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.
Many theoretical and laboratory studies predict H 2 to be formed in highly excited ro-vibrational states. The consequent relaxation of excited levels via a cascade of infrared transitions might be observable in emission from suitable interstellar regions. In this work, we model H 2 formation pumping in standard dense clouds, taking into account the H/H 2 transition zone, through an accurate description of chemistry and radiative transfer. The model includes recent laboratory data on H 2 formation, as well as the effects of the interstellar UV field, predicting the populations of gas-phase H 2 molecules and their IR emission spectra. Calculations suggest that some vibrationally excited states of H 2 might be detectable towards lines of sight where significant destruction of H 2 occurs, such as X-ray sources, and provide a possible explanation as to why observational attempts resulted in no detections reported to date.Subject headings: interstellar: molecules -molecular: processes -infrared: ISM: lines and bands HD formed on HOPG held at 15 K has been found in ro-vibrational states (v, J) = (1 −
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.