The Bitlis-Pütürge collision zone of SE Turkey is the area of maximum indentation along the >2400-km-long Assyrian-Zagros suture between Arabia and Eurasia. The integration of (i ) fission-track analyses on apatites, (ii ) (U-Th)/He analyses on zircons, (iii ) field observations on stratigraphic and structural relationships, and (iv) preexisting U-Pb and Ar-Ar age determinations on zircons, amphiboles, and micas provides for the first time an overall picture of the thermo chronometric evolution of this collisional orogen. The data set points to ubiquitous latest Cretaceous metamorphism of a passive margin sedimentary sequence and its igneous basement not only along the suture zone but across the entire width of the Anatolia-Tauride block north of the suture. During the early Paleogene the basement complex of the Bitlis and Pütürge massifs along the suture was rapidly exhumed due to extensional tectonics in a back-arc setting and eventually overlain by Eocene shallow-marine sediments. The entire Oligocene is characterized by a rather flat thermochronometric evolution in the Bitlis orogenic wedge, contrary to the widely held belief that this epoch marked the inception of the Arabia-Eurasia collision and was characterized by widespread deformation. Deposition of a thick Oligocene sedimentary succession in the Muş-Hınıs basin occurred in a retroarc foreland setting unrelated to continental collision. During the Middle Miocene, the Bitlis-Pütürge orogenic wedge underwent a significant and discrete phase of rapid growth by both frontal accretion, as shown by cooling/exhumation of the foreland deposits on both sides of the orogenic prism, and underplating, as shown by cooling/ exhumation of the central metamorphic core of the orogenic wedge. We conclude that continental collision started in the mid-Miocene, as also shown by coeval thick syntectonic clastic wedges deposited in flexural basins along the Arabian plate northern margin and contractional reactivation of a number of preexisting structures in the European foreland.
We provide the first comprehensive picture of the thermochronometric evolution of the Cimmerian Strandja metamorphic massif of SE Bulgaria and NW Turkey, concluding that the bulk of the massif has escaped significant Alpine-age deformation. Following Late Jurassic heat-ing, the central part of the massif underwent a Kimmeridgian-Berriasian phase of relatively rapid cooling followed by very slow cooling in Cretaceous-to-Early Eocene times. These results are consistent with a Late Jurassic-Early Cretaceous Neocimmerian (palaeo-Alpine) phase of north-verging thrust imbrication and regional metamorphism, followed by slow cooling/exhumation driven by erosion. From a thermochronometric viewpoint, the bulk of the Cimmerian Strandja orogen was largely unaffected by the compressional stress related to the closure of the Vardar-İzmir-Ankara oceanic domain(s) to the south, contrary to the adjacent Rhodopes. Evidence of Alpine-age deformation is recorded only in the northern sector of the Strandja massif, where both basement and sedimentary rocks underwent cooling/exhumation associated with an important phase of shortening of the East Balkan fold-and-thrust belt starting in the Middle-Late Eocene. Such shortening focused in the former Srednogorie rift zone because this area had been rheolo-gically weakened by Late Cretaceous extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.