A phytochemical study of a Serjania marginata leaf extract with antiulcer activity afforded 15 compounds, including the new 3-O-α-l-arabinopyranosyl(1→3)-α-l-rhamnopyranosyl(1→2)[β-d-glucopyranosyl(1→4)]-α-l-arabinopyranosyloleanolic acid (1) and 7,5″-anhydroapigenin 8-C-α-(2,6-dideoxy-5-hydroxy-ribo-hexopyranosyl)-4'-O-β-d-glucopyranoside (4). The structures of the new compounds were determined by spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry, and chemical methods. Compound 4 is a C-hexopyranosylapigenin with an unusual cyclic ether linkage between C-5″ and C-7 of apigenin. The isolated proanthocyanidins have high antioxidant activities, and these compounds are probably responsible for the gastroprotective effect of the extract.
Successive applications of insecticides to control Plutella xylostella L. (Lepidoptera: Plutellidae) have resulted in the emergence of resistant populations of this insect. A novel control measure for this target insect could be the use of botanical insecticides derived from plant tissues. Hence, we experimentally tested aqueous extracts of Alibertia edulis (Rich.), Alibertia intermedia (Mart.), and Alibertia sessilis (Vell.) K. Schum. found in the Brazilian savannah in order to investigate their potential to disrupt the life cycle of P. xylostella. Aqueous extracts of the leaves of A. intermedia and A. sessilis negatively affected the development of P. xylostella in all stages of the life cycle, prolonging the larval stage and causing mortality in the larval or pupal stages. Treatments with A. intermedia and A. sessilis extracts caused the lowest fecundity and the number of hatched larvae. The harmful effects of these aqueous extracts on the life cycle of P. xylostella may be attributable to the flavonoids and other phenolic compounds present in A. intermedia and A. sessilis. These aqueous botanical extracts are low in toxicity when compared to non-aqueous pesticides, and may emerge as an effective approach for control of populations of P. xylostella.
Attalea phalerata Mart. ex Spreng. (Arecaceae), popularly known as “bacuri”, is used in Brazilian folk medicine. Its oil is used orally to relieve pulmonary congestion and joint pain. In topical applications, it is applied as an effective hair tonic and anti-dandruff. The in natura pulp and its nuts are used as food because of its nutritional value. Despite its use in folk medicine, there is a lack of data regarding its in vivo/in vitro cytotoxic/genotoxic and clastogenic effects. Therefore, in this study, we evaluated the cytotoxic, genotoxic and clastogenic effects of Attalea phalerata Mart. ex Spreng. oil (APMO) in vitro and in vivo. For the analysis of cytotoxic potential, the Artemia salina and MTT (3-(4,5-dimethizzol-zyl)-2,5-diphenyltetrazolium bromide) assays were performed. Possible cytotoxic, genotoxic and clastogenic effects of APMO intake were determined by performing the comet and micronucleus assays. Male and female Wistar rats were orally treated with doses of 125, 250, 500 or 1000 mg.kg-1 of the APMO daily for 28 consecutive days (four weeks). The results showed that the APMO did not induce cell death in the experiments of Artemia salina and MTT, indicating that it has no cytotoxicity. The APMO did not cause significant damage to the DNA of the rats in the four doses used when compared to the negative control group (saline + Tween® 80). The APMO did not present any significant increase in micronucleated polychromatic erythrocytes (MNPCEs) for the four tested doses. When compared to the positive control group, all groups (comet and micronucleus tests) were statistically different. These data suggest that the administration of Attalea phalerata Mart oil. ex Spreng does not cause cytotoxicity, genotoxicity and clastogenicity in experimental models in vitro and in vivo following oral administration in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.