Withaferin A (WA) is derived from the medicinal plant Withania somnifera, which has been safely used for centuries in Indian Ayurvedic medicine for treatment of different ailments. We now show, for the first time, that WA exhibits significant activity against human breast cancer cells in culture and in vivo. The WA treatment decreased viability of MCF-7 (estrogen-responsive) and MDA-MB-231 (estrogenindependent) human breast cancer cells in a concentrationdependent manner. The WA-mediated suppression of breast cancer cell viability correlated with apoptosis induction characterized by DNA condensation, cytoplasmic histone-associated DNA fragmentation, and cleavage of poly-(ADP-ribose)-polymerase. On the other hand, a spontaneously immortalized normal mammary epithelial cell line (MCF-10A) was relatively more resistant to WA-induced apoptosis compared with breast cancer cells. The WAmediated apoptosis was accompanied by induction of Bim-s and Bim-L in MCF-7 cells and induction of Bim-s and Bim-EL isoforms in MDA-MB-231 cells. The cytoplasmic histone-associated DNA fragmentation resulting from WA exposure was significantly attenuated by knockdown of protein levels of Bim and its transcriptional regulator FOXO3a in both cell lines. Moreover, FOXO3a knockdown conferred marked protection against WA-mediated induction of Bim-s expression. The growth of MDA-MB-231 cells implanted in female nude mice was significantly retarded by 5 weekly i.p. injections of 4 mg WA/kg body weight. The tumors from WA-treated mice exhibited reduced cell proliferation and increased apoptosis compared with tumors from control mice. These results point toward an important role of FOXO3a and Bim in regulation of WA-mediated apoptosis in human breast cancer cells. [Cancer Res 2008;68(18):7661-9]
The present study shows that oral gavage of 6 Mmol D,Lsulforaphane (SFN), a synthetic analogue of cruciferous vegetable-derived L isomer, thrice per week beginning at 6 weeks of age, significantly inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice without causing any side effects. The incidence of the prostatic intraepithelial neoplasia and well-differentiated (WD) carcinoma were f23% to 28% lower (P < 0.05 compared with control by MannWhitney test) in the dorsolateral prostate (DLP) of SFNtreated mice compared with controls, which was not due to the suppression of T-antigen expression. The area occupied by the WD carcinoma was also f44% lower in the DLP of SFNtreated mice relative to that of control mice (P = 0.0011 by Mann Whitney test). Strikingly, the SFN-treated mice exhibited f50% and 63% decrease, respectively, in pulmonary metastasis incidence and multiplicity compared with control mice (P < 0.05 by t test). The DLP from SFN-treated mice showed decreased cellular proliferation and increased apoptosis when compared with that from control mice. Additionally, SFN administration enhanced cytotoxicity of cocultures of natural killer (NK) cells and dendritic cells (DC) against TRAMP-C1 target cells, which correlated with infiltration of T cells in the neoplastic lesions and increased levels of interleukin-12 production by the DC. In conclusion, the results of the present study indicate that SFN administration inhibits prostate cancer progression and pulmonary metastasis in TRAMP mice by reducing cell proliferation and augmenting NK cell lytic activity.
Withaferin A (WA) is derived from the medicinal plant Withania somnifera that has been safely used for centuries in the Indian Ayurvedic medicine for treatment of various ailments. We now demonstrate that WA treatment causes G2 and mitotic arrest in human breast cancer cells. Treatment of MDA-MB-231 (estrogen-independent) and MCF-7 (estrogen-responsive) cell lines with WA resulted in a concentration-and time-dependent increase in G2-M fraction, which correlated with a decrease in levels of cyclin-dependent kinase 1 (Cdk1), cell division cycle 25B (Cdc25B) and/or Cdc25C proteins leading to accumulation of Tyr15 phosphorylated (inactive) Cdk1. Ectopic expression of Cdc25C conferred partial yet significant protection against WA-mediated G2-M phase cell cycle arrest in MDA-MB-231 cells. The WA-treated MDA-MB-231 and MCF-7 cells were also arrested in mitosis as judged by fluorescence microscopy and analysis of Ser10 phosphorylated histone H3. Mitotic arrest resulting from exposure to WA was accompanied by an increase in the protein level of anaphase promoting complex/cyclosome substrate securin. In conclusion, the results of the present study suggest that G2-M phase cell cycle arrest may be an important mechanism in anti-proliferative effect of WA against human breast cancer cells.
Pancreatic cancer has a poor prognosis and it is often diagnosed at advanced stages, which makes it very difficult to treat. The low survival rate of patients with pancreatic cancer points toward an increased need for novel therapeutic and chemopreventive strategies and early detection. Increased consumption of fruits and vegetables has been associated with a reduced risk of pancreatic cancer. Both synthetic as well as natural, diet-derived bioactive compounds have been evaluated as pancreatic cancer chemopreventive agents and have been shown to have various degrees of efficacy in cellular and in vivo animal models. Some chemopreventive agents (for example curcumin, resveratrol, B-DIM) have also been reported to sensitize pancreatic cancer cells to standard chemotherapeutic drugs (for example gemcitabine or erlotinib), which suggests the potential use of chemopreventive agents as potentiators of standard chemotherapy. Very few clinical trials with pancreatic cancer chemopreventive agents have been completed and some are in early phases. Further development of pancreatic cancer chemopreventive agents may prove to be tremendously valuable for individuals at high-risk of developing pancreatic cancer and patients who present with premalignant lesions. This Review discusses the current state of the pancreatic cancer chemoprevention field and highlights the challenges ahead.
Research over the last three decades has provided convincing evidence to support the premise that diets rich in fruits and vegetables may be protective against the risk of different types of cancers. Initial evidence for protective effect of fruits and vegetables against cancer risk came from population-based case-control studies, which prompted intense research aimed at (a) identification of bioactive component(s) responsible for the anticancer effects of fruits and vegetables, (b) elucidation of the mechanisms by which bioactive food components may prevent cancer, and (c) determination of their efficacy for prevention of cancer in animal models. The bioactive components responsible for cancer chemopreventive effects of various edible plants have now been identified. For instance, anticancer effect of Allium vegetables including garlic is attributed to organosulfur compounds (e.g., diallyl trisulfide). Interestingly, unlike cancer chemotherapy drugs, many bioactive food components selectively target cancer cells. Molecular basis for selectivity of anticancer bioactive food components towards cancer cells remains elusive, but these agents appear promiscuous and target multiple signal transduction pathways to inhibit cancer cell growth in vitro and in vivo. Despite convincing observational and experimental evidence, however, limited effort has been directed towards clinical investigations to determine efficacy of bioactive food components for prevention of human cancers. This article reviews current knowledge on cancer chemopreventive effects of a few highly promising dietary constituents, including garlic-derived organosulfides, berry compounds, and cruciferous vegetable-derived isothiocyanates, and serves to illustrate complexity of the signal transduction mechanisms in cancer chemoprevention by these promising bioactive food components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.