Hepatocyte transplantation to treat liver disease is largely limited by the availability of useful cells. Amniotic epithelial cells (hAECs) from term human placenta express surface markers and genes characteristic of embryonic stem cells and have the ability to differentiate into all three germ layers, including tissues of endodermal origin (i.e. liver). Thus, hAECs could provide a source of stem cell-derived hepatocytes for transplantation. We investigated the differentiation of hAECs in vitro and after transplantation into the liver of SCID/Beige mice. Moreover, we tested the ability of rat amniotic epithelial cells (rAECs) to replicate and differentiate upon transplantation into a syngenic model of liver repopulation. In vitro results indicate that the presence of extracellular matrix proteins together with a cocktail of growth factors, cytokines and hormones are required for differentiation of hAECs into hepatocyte-like cells. Differentiated hAECs expressed hepatocyte markers at levels comparable to those of fetal hepatocytes. They were able to metabolize ammonia, testosterone and 17α-hydroxyprogesterone caproate, and expressed inducible fetal cytochromes. After transplantation into the liver of Retrorsine (RS) treated SCID/beige mice, naïve hAECs differentiated into hepatocyte-like cells which expressed mature liver genes such as cytochromes, plasma proteins, transporters and other hepatic enzymes at levels equal to adult liver tissue. When transplanted in a syngenic animal pretreated with RS, rAECs were able to engraft and generate a progeny of cells with morphology and protein expression typical of mature hepatocytes. Conclusion amniotic epithelial cells possess the ability to differentiate into cells with characteristics of functional hepatocytes, in vitro and in vivo, thus representing a useful and non controversial source of cells for transplantation.
Asthma is a multifactorial disease influenced by genetic and environmental factors. In the past decade, several loci and >100 genes have been found to be associated with the disease in at least one population. Among these loci, region 12q13-24 has been implicated in asthma etiology in multiple populations, suggesting that it harbors one or more asthma susceptibility genes. We performed linkage and association analyses by transmission/disequilibrium test and case-control analysis in the candidate region 12q13-24, using the Sardinian founder population, in which limited heterogeneity of pathogenetic alleles for monogenic and complex disorders as well as of environmental conditions should facilitate the study of multifactorial traits. We analyzed our cohort, using a cutoff age of 13 years at asthma onset, and detected significant linkage to a portion of 12q13-24. We identified IRAK-M as the gene contributing to the linkage and showed that it is associated with early-onset persistent asthma. We defined protective and predisposing SNP haplotypes and replicated associations in an outbred Italian population. Sequence analysis in patients found mutations, including inactivating lesions, in the IRAK-M coding region. Immunohistochemistry of lung biopsies showed that IRAK-M is highly expressed in epithelial cells. We report that IRAK-M is involved in the pathogenesis of early-onset persistent asthma. IRAK-M, a negative regulator of the Toll-like receptor/IL-1R pathways, is a master regulator of NF- kappa B and inflammation. Our data suggest a mechanistic link between hyperactivation of the innate immune system and chronic airway inflammation and indicate IRAK-M as a potential target for therapeutic intervention against asthma.
Liver repopulation by transplanted normal hepatocytes has been described in a number of experimental settings. Extensive repopulation can also occur from the selective proliferation of endogenous normal hepatocytes, both in experimental animals and in the human liver. This review highlights the intriguing association between clinical and experimental conditions related to liver repopulation and an increased risk for development of hepatocellular carcinoma. It is suggested that any microenvironment that is able to sustain the clonal growth of normal transplanted (or endogenous) hepatocytes is also geared to select for the emergence of rare resistant cells with an altered phenotype. Whereas the first pathway leads to liver repopulation with normal histology, the latter results in the growth of focal proliferative lesions and carries an increased risk of neoplastic disease. The implications of this association are discussed, both in terms of pathogenetic significance and possible therapeutic exploitation.
rac-2-Cyclopentylthio-6-[1-(2,6-difluorophenyl)ethyl]-3,4-dihydro-5-methylpyrimidin-4(3H)-one (MC-1047) is a potent inhibitor of HIV-1 multiplication in acutely infected cells. MC-1047 racemate has been resolved by chiral HPLC using, as chiral stationary phase (CSP), a commercially available (R,R)-Whelk-01 column. The optical purity and the circular dichroism (CD) of the two resolved enantiomers were determined and their biological activities tested in in vitro assays. Molecular modeling inspection of the binding of (R) and (S) enantiomers to the non-nucleoside binding site (NNBS) of reverse transcriptase (RT) using the defined model of F(2)-S-DABO/RT complex indicates the (R) enantiomer as the more active isomer.
SummaryCancer increases with age and often arises from the selective clonal growth of altered cells. Thus, any environment favoring clonal growth per se poses a higher risk for cancer development. Using a genetically tagged animal model, we investigated whether aging is associated with increased clonogenic potential. Groups of 4-, 12-, 18-, and 24-month-old Fischer 344 rats were infused (via the portal vein) with 2 × × × × 10 6 hepatocytes isolated from a normal syngenic 2-month-old donor. Animals deficient in dipeptidylpeptidase type IV (DPP-IV-) enzyme were used as recipients, allowing for the histochemical detection of injected DPP-IV + cells. Groups of animals were sacrificed at various times thereafter. No growth of DPP-IV + transplanted hepatocytes was present after either 2 or 6 months in the liver of rats transplanted at young age, as expected. In striking contrast, significant expansion of donor-derived cells was seen in animals transplanted at the age of 18 months: clusters comprising 7-10 DPP-IV+ hepatocytes/crosssection were present after 2 months and were markedly enlarged after 6 months (mean of 88 ± ± ± ± 35 cells/cluster/ cross-section). These results indicate that the microenvironment of the aged liver supports the clonal expansion of transplanted normal hepatocytes. Such clonogenic environments can foster the selective growth of pre-existing altered cells, thereby increasing the overall risk for cancer development associated with aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.