In this paper we consider the (2D and 3D) exterior problem for the non homogeneous wave equation, with a Dirichlet boundary condition and non homogeneous initial conditions. First we derive two alternative boundary integral equation formulations to solve the problem. Then we propose a numerical approach for the computation of the extra "volume" integrals generated by the initial data. To show the efficiency of this approach, we solve some test problems by applying a second order Lubich discrete convolution quadrature for the discretization of the time integral, coupled with a classical collocation boundary element method. Some conclusions are finally drawn.
We consider the classical wave equation problem defined on the exterior of a bounded 2D space domain, possibly having far field sources. We consider this problem in the time domain, but also in the frequency domain. For its solution we propose to associate with it a boundary integral equation (BIE) defined on an artificial boundary surrounding the region of interest. This boundary condition is nonreflecting (or transparent) for both outgoing and incoming waves and it does not have to include necessarily the problem datum supports. The problem physical domain can even be a multi-domain, defined by the union of several disjoint domains. These domains can be convex or nonconvex. This transparent boundary condition is imposed pointwise on the chosen artificial boundary; therefore, its (space collocation) discretization can be coupled with a (space) finite difference or finite element method for the associated PDE problem. In the time-domain case, a classical (explicit or implicit) time integrator is also used. We present a consistency result for the BIE discretization and a sample of the intensive numerical testing we have performed.
We consider the numerical solution of the wave equation in a two-dimensional domain and start from a boundary integral formulation for its discretization. We employ the convolution quadrature (CQ) for the temporal and a Galerkin boundary element method (BEM) for the spatial discretization. Our main focus is the sparse approximation of the arising sequence of boundary integral operators by panel clustering. This requires the definition of an appropriate admissibility condition such that the arising kernel functions can be efficiently approximated on admissible blocks.The resulting method has log-linear complexity O N (N + M ) q 4+s , s ∈ {0, 1}, where N is the number of time points, M denotes the dimension of the boundary element space, and q = O (log N + log M ) is the order of the panelclustering expansion.Numerical experiments will illustrate the efficiency and accuracy of the proposed CQ-BEM method with panel clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.