Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology.
Mesenchymal stem cells (MSCs) play a central role in the intercellular signaling within the tumor microenvironment (TME), exchanging signals with cancer cells and tumor stromal cells, such as cancer-associated fibroblasts and inflammatory mononuclear cells. Research attributes both pro-tumor and anti-tumor actions to MSCs; however, evidence indicates that MSCs specific effect on the tumor depends on the source of the MSCs and the type of tumor. There are consistent data proving that MSCs from reproductive tissues, such as the uterus, umbilical cord or placenta, have potent anti-tumor effects and tropism towards tumor tissues. More interestingly, products derived from MSCs, such as secretome or extracellular vesicles, seem to reproduce the effects of their parental cells, showing a potential advantage for clinical treatments by avoiding the drawbacks associated with cell therapy. Given these perspectives, it appears necessary new research to optimize the production, safety and antitumor potency of the products derived from the MSCs suitable for oncological therapies.
Acute respiratory distress syndrome (ARDS) represents a current challenge for medicine due to its incidence, morbidity and mortality and, also, the absence of an optimal treatment. The COVID-19 outbreak only increased the urgent demand for an affordable, safe and effective treatment for this process. Early clinical trials suggest the therapeutic usefulness of mesenchymal stem cells (MSCs) in acute lung injury (ALI) and ARDS. MSC-based therapies show antimicrobial, anti-inflammatory, regenerative, angiogenic, antifibrotic, anti-oxidative stress and anti-apoptotic actions, which can thwart the physiopathological mechanisms engaged in ARDS. In addition, MSC secretome and their derived products, especially exosomes, may reproduce the therapeutic effects of MSC in lung injury. This last strategy of treatment could avoid several safety issues potentially associated with the transplantation of living and proliferative cell populations and may be formulated in different forms. However, the following diverse limitations must be addressed: (i) selection of the optimal MSC, bearing in mind both the heterogeneity among donors and across different histological origins, (ii) massive obtention of these biological products through genetic manipulations of the most appropriate MSC, (iii) bioreactors that allow their growth in 3D, (iv) ideal culture conditions and (v) adequate functional testing of these obtaining biological products before their clinical application.
Colorectal carcinoma (CRC) associated with inflammatory bowel disease (IBD) is an example of an inflammation-related cancer. Matrix metalloproteases (MMP) are known to be associated with both processes. The aim of the study was to compare the expression of MMP-7, MMP-14 and tissue inhibitor of metalloproteases-1 (TIMP-1) in sporadic CRC- and IBD-associated CRC, and to compare the expression in inflamed and non-inflamed colonic tissue samples from IBD patients without or with associated CRC. An immunohistochemical study of MMP-7, -14 and TIMP-1 was performed on sporadic CRC (n = 86), IBD-associated CRC (n = 23) and colorectal mucosa of non-tumor samples from IBD patients without (n = 47) and with (n = 23) associated CRC. These factors were more frequently expressed by cancer-associated fibroblasts (CAF) from IBD-associated CRC than by CAF from CRC not associated with IBD. Regarding the inflamed tissue of IBD patients, Crohn’s disease (CD) patients with CRC development showed a higher expression of MMP-14 by fibroblasts and by mononuclear inflammatory cells (MICs) than CD patients without CRC development. In non-inflamed tissue samples, MMP-7 associated with fibroblasts and MICs, and TIMP-1 associated with MICs, were more frequently expressed in CD patients with CRC development than in CD patients without CRC development. Our data suggest that these factor expressions by stromal cells may be biological markers of CRC development risk in IBD patients.
Background: Tumor budding is a histological phenomenon consisting of the formation of small clusters of one to five undifferentiated malignant cells detached from the main tumor mass which are observed in the tumor stroma. In the present study, we investigated the prognostic significance of tumor budding in breast cancer and its relationship with the expressions of matrix metalloproteases (MMPs) and their tissue inhibitors (TIMPs). Methods: The number of buds was counted in whole-tissue sections from 153 patients with invasive ductal carcinomas who underwent a long follow-up period. In addition, an immunohistochemical study of MMP-9, -11, and -14 TIMP-1 and -2 expression by cell types at the invasive tumor front was carried out. Results: There was a wide variability in the number of buds among tumors, ranging from 0 to 28 (median = 5). Tumor budding count ≥ 4 was the optimal cut-off to predict both relapse-free and overall survival. High-grade tumor budding was associated with MMP/TIMP expression by cancer-associated fibroblasts. In addition, we found that the combination of tumor budding grade with MMP/TIMP expression by stromal cells, and especially with MMP-11 expression by mononuclear inflammatory cells, significantly improved the prognostic evaluation. Conclusion: High-grade tumor budding is associated with a more aggressive tumor phenotype, which, combined with MMP/TIMP expression by stromal cells at the invasive front of the tumor, identifies patients with poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.