We have studied the influence of periplasmic Cu,Zn superoxide dismutase on the intracellular survival of Escherichia coli strains able to invade epithelial cells by the expression of the inv gene from Yersinia pseudotuberculosis but unable to multiply intracellularly. Intracellular viability assays, confirmed by electron microscopy observations, showed that invasive strains of E. coli engineered to increase Cu,Zn superoxide dismutase production are much more resistant to intracellular killing than strains containing only the chromosomal sodC copy. However, we have found only a slight difference in survival within HeLa cells between a sodC-null mutant and its isogenic wild-type strain. Such a small difference in survival correlates with the very low expression of this enzyme in the wild-type strain. We have also observed that acid-and oxidative stress-sensitive E. coli HB101(pRI203) is more rapidly killed in epithelial cells than E. coli GC4468(pRI203). The high mortality of E. coli HB101(pRI203), independent of the acidification of the endosome, is abolished by the overexpression of sodC. Our data suggest that oxyradicals are involved in the mechanisms of bacterial killing within epithelial cells and that high-level production of periplasmic Cu,Zn superoxide dismutase provides bacteria with an effective protection against oxidative damage. We propose that Cu,Zn superoxide dismutase could offer an important selective advantage in survival within host cells to bacteria expressing high levels of this enzyme.Until a few years ago Cu,Zn superoxide dismutase (Cu, ZnSOD) was considered almost exclusively a eukaryotic enzyme, protecting the cytosol and the extracellular environment of higher organisms from damage by oxygen free radicals (1). Recently, Cu,ZnSOD has been identified in the periplasmic space of a wide range of gram-negative bacteria, including Brucella abortus (6), Haemophilus spp., Actinobacillus spp., Pasteurella spp., Neisseria meningitidis (24-26), Escherichia coli K-12 (7), Legionella pneumophila (40), Salmonella spp. (9), and Mycobacterium tuberculosis (45). This enzyme is thought to protect bacteria from toxic oxygen-free radicals generated outside the cell or in the periplasm itself, since superoxide is unable to cross the cytoplasmic membrane (21). Therefore, Cu,ZnSOD has been proposed to be a determinant of virulence in bacteria potentially exposed to toxic free radicals produced by the host in response to bacterial infection. In vivo experiments have demonstrated the role of bacterial Cu,ZnSOD in the virulence and pathogenicity of infecting microorganisms (15,18,19,36,42,43), while in vitro models have provided conflicting data concerning Cu,ZnSOD involvement in bacterial resistance to macrophage killing (19, 42) or survival within nonprofessional phagocytes (42). However, more recent results have shown that this enzyme protects Salmonella enterica serovar Typhimurium (15) and an overproducing strain of E. coli (4) from macrophage killing and that neutropenia restores virulence to an attenuated C...
To investigate the structural/functional role of the dimeric structure in Cu,Zn superoxide dismutases, we have studied the stability to a variety of agents of the Escherichia coli enzyme, the only monomeric variant of this class so far isolated. Differential scanning calorimetry of the native enzyme showed the presence of two well defined peaks identified as the metal free and holoprotein. Unlike dimeric Cu,Zn superoxide dismutases, the unfolding of the monomeric enzyme was found to be highly reversible, a behavior that may be explained by the absence of free cysteines and the highly polar nature of its molecular surface. The melting temperature of the E. coli enzyme was found to be pH-dependent with the holoenzyme transition centered at 66°C at pH 7.8 and at 79.3°C at pH 6.0. The active-site metals, which were easily displaced from the active site by EDTA, were found to enhance the thermal stability of the monomeric apoprotein but to a lower extent than in the dimeric enzymes from eukaryotic sources. Apo-superoxide dismutase from E. coli was shown to be nearly as stable as the bovine apoenzyme, whose holo form is much more stable and less sensitive to pH variations. The remarkable pH susceptibility of the E. coli enzyme structure was paralleled by the slow decrease in activity of the enzyme incubated at alkaline pH and by modification of the EPR spectrum at lower pH values than in the case of dimeric enzymes. Unlike eukaryotic Cu,Zn superoxide dismutases, the active-site structure of the E. coli enzyme was shown to be reversibly perturbed by urea. These observations suggest that the conformational stability of Cu,Zn superoxide dismutases is largely due to the intrinsic stability of the -barrel fold rather than to the dimeric structure and that pH sensitivity and weak metal binding of the E. coli enzyme are due to higher flexibility and accessibility to the solvent of its activesite region.
Gel-filtration chromatography experiments performed at high protein concentrations demonstrate that the Cu,Zn superoxide dismutase from Escherichia coli is monomeric irrespective of the buffer and of ionic strength. The catalytic activity of the recombinant enzyme is comparable with that of eukaryotic isoenzymes, indicating that the dimeric structure commonly found in Cu,Zn superoxide dismutases is not necessary to ensure efficient catalysis. The analysis of the amino acid sequences suggests that an altered interaction between subunits occurs in all bacterial Cu,Zn superoxide dismutases. The substitution of hydrophobic residues with charged ones at positions located at the dimer interface of all known Cu,Zn superoxide dismutases could be specifically responsible for the monomeric structure of the E. coli enzyme.
The leader sequence of Mycobacterium tuberculosis Cu,Zn superoxide dismutase (Cu,ZnSOD) contains a prokaryotic membrane lipoprotein attachment site. In the present study, we have found that the protein, which exhibits detectable SOD activity, is lipid-modified and associated with the bacterial membrane when expressed either in M. tuberculosis or in Escherichia coli. These results provide the first demonstration of lipid modification of a Cu,ZnSOD. An analysis of the sodC genes present in available databases indicates that the same signal for lipid modification is also present in the sodC gene products from other mycobacteria and Gram-positive bacteria and, uniquely, in two distinct sodC gene products from the Gram-negative bacterium Salmonella typhimurium. Evidence is also provided for an up-regulation of M. tuberculosis sodC in response to phagocytosis by human macrophages, suggesting that Cu,ZnSOD is involved in the mechanisms that facilitate mycobacterial intracellular growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.