Protein aggregation is a notable feature of various human disorders, including Parkinson's disease, Alzheimer's disease and many others systemic amyloidoses. An increasing number of observations in vitro suggest that transition metals are able to accelerate the aggregation process of several proteins found in pathological deposits, e.g. alpha-synuclein, amyloid beta (Abeta) peptide, beta(2)-microglobulin and fragments of the prion protein. Here we report the effects of metal ions on the aggregation rate of human muscle acylphosphatase, a suitable model system for aggregation studies in vitro. Among the different species tested, Cu(2+) produced the most remarkable acceleration of aggregation, the rate of the process being 2.5-fold higher in the presence of 0.1 mM metal concentration. Data reported in the literature suggest the possible role played by histidine residues or negatively charged clusters present in the amino acid sequence in Cu(2+)-mediated aggregation of pathological proteins. Acylphosphatase does not contain histidine residues and is a basic protein. A number of histidine-containing mutational variants of acylphosphatase were produced to evaluate the importance of histidine in the aggregation process. The Cu(2+)-induced acceleration of aggregation was not significantly altered in the protein variants. The different aggregation rates shown by each variant were entirely explained by the changes of hydrophobicity or propensity to form a beta structure introduced by the point mutation. The effect of Cu(2+) on acylphosphatase aggregation cannot therefore be attributed to the specific factors usually invoked in the aggregation of pathological proteins. The effect, rather, seems to be a general related to the chemistry of the polypeptide backbone and could represent an additional deleterious factor resulting from the alteration of the homeostasis of metal ions in cells.
The tryptic digests of blood samples obtained from transferrin C1 and C2 (TfC 1 and TfC2 hereafter) genotypes were analysed by Liquid Chromatography coupled to Electrospray Mass Spectrometry (LC/ESI--MS/MS). The analytical results confirmed the single base change in exon 15 of the Tf gene. The solution behaviour and the iron binding properties of the two Tf variants were studied by UV-visible spectrophotometry and by circular dichroism. It appears that TfC2 globally manifests the same spectral features as the native protein. The local conformation of the two iron binding sites is conserved in the two Tf variants as evidenced by the visible absorption and CD spectra. Also, the iron binding capacities and their pH-dependent profiles are essentially the same. Overall, our investigation points out that the single amino acid substitution in TfC2 (Pro 570 Ser) does not affect the general conformation of the protein nor the local structure of the iron binding sites. The implications of these results for the etiopathogenesis of Alzheimer's disease are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.