Most drugs currently entering the clinical pipeline for severe malaria therapeutics are of lipophilic nature, with a relatively poor solubility in plasma and large biodistribution volumes. Low amounts of these compounds do consequently accumulate in circulating Plasmodium-infected red blood cells, exhibiting limited antiparasitic activity. These drawbacks can in principle be satisfactorily dealt with by stably encapsulating drugs in targeted nanocarriers. Here this approach has been adapted for its use in immunocompetent mice infected by the Plasmodium yoelii 17XL lethal strain, selected as a model for human blood infections by Plasmodium falciparum. Using immunoliposomes targeted against a surface protein characteristic of the murine erythroid lineage, the protocol has been applied to two novel antimalarial lipophilic drug candidates, an aminoquinoline and an aminoalcohol. Large encapsulation yields of >90% were obtained using a citrate-buffered pH gradient method and the resulting immunoliposomes reached in vivo erythrocyte targeting and retention efficacies of >80%. In P. yoelii-infected mice, the immunoliposomized aminoquinoline succeeded in decreasing blood parasitemia from severe to uncomplicated malaria parasite densities (i.e. from ≥25% to ca. 5%), whereas the same amount of drug encapsulated in non-targeted liposomes had no significant effect on parasite growth. Pharmacokinetic analysis indicated that this good performance was obtained with a rapid clearance of immunoliposomes from the circulation (blood half-life of ca. 2 h), suggesting a potential for improvement of the proposed model.
It has been over a century since Carlos Chagas discovered the Trypanosoma cruzi (T. cruzi) as the causative agent of Chagas disease (CD), a neglected tropical disease with several socioeconomic, epidemiological and human health repercussions. Currently, there are only two commercialized drugs to treat CD in acute phase, nifurtimox and benznidazol, with several adverse side effects. Thus, new orally available and safe drugs for this parasitic infection are urgently required. One strategy of great importance in new drug discovery programmes is based on the search of molecules enabling to interfere with enzymes involved in T. cruzi metabolism. This review will focus on two of the most promising targets for the therapy of CD: trypanothione reductase (TR) and the iron-containing superoxide dismutase (Fe- SOD), which protect the parasite against oxidative damage by reactive oxygen species. A brief comparison of the function, mechanism of action and the active sites between T. cruzi TR and Fe-SOD with their analogues enzymes in human, glutathione reductase (GR) and the corresponding SODs, will be discussed. This review will also summarize the recent development and structure-activity relationships of novel compounds reported for their ability to selectively inhibit these targets, aiming to define molecular bases in the search for new effective treatment of CD.
ABSTRACT. As a continuation of our research and with the aim of obtaining new agents against Chagas disease, an extremely neglected disease which threatens 100 million people, eighteen new quinoxaline 1,4-di-N-oxide derivatives have been synthesized following the Beirut reaction. The synthesis of the new derivatives was optimized through the use of a new and more efficient microwave-assisted organic synthetic method. The new derivatives showed excellent in vitro biological activity against Trypanosoma cruzi. Compound 17, which was substituted with 2 fluoro groups at the 6-and 7-positions of the quinoxaline ring, was the most active and selective in the cytotoxicity assay. The electrochemical study showed that the most active compounds, which were substituted by electron-withdrawing groups, possessed a greater ease of reduction of the N-oxide groups.
ABSTRACT. We report benzo [b]thiophene derivatives synthesized according to a dual strategy. 8j, 9c, and 9e with affinity values toward 5-HT 7 R and 5-HTT were selected to probe using the forced swimming text (FST). The results showed significant antidepressant activity after chronic treatment. 9c was effective in reducing the immobility time in FST even after acute treatment. These findings identify these compounds as a new class of antidepressants with a rapid onset of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.