Haemophilus influenzae is a major pathogen of the respiratory tract in humans that has developed the capability to exploit host NAD(P) for its nicotinamide dinucleotide requirement. This strategy is organized around a periplasmic enzyme termed NadN (NAD nucleotidase), which plays a central role by degrading NAD into adenosine and NR (nicotinamide riboside), the latter being subsequently internalized by a specific permease. We performed a biochemical and structural investigation on H. influenzae NadN which determined that the enzyme is a Zn2+-dependent 5'-nucleotidase also endowed with NAD(P) pyrophosphatase activity. A 1.3 Å resolution structural analysis revealed a remarkable conformational change that occurs during catalysis between the open and closed forms of the enzyme. NadN showed a broad substrate specificity, recognizing either mono- or di-nucleotide nicotinamides and different adenosine phosphates with a maximal activity on 5'-adenosine monophosphate. Sequence and structural analysis of H. influenzae NadN led us to discover that human CD73 is capable of processing both NAD and NMN, therefore disclosing a possible novel function of human CD73 in systemic NAD metabolism. Our data may prove to be useful for inhibitor design and disclosed unanticipated fascinating evolutionary relationships.
Kynurenic acid is an endogenous neuroactive compound whose unbalancing is involved in the pathogenesis and progression of several neurological diseases. Kynurenic acid synthesis in the human brain is sustained by the catalytic activity of two kynurenine aminotransferases, hKAT I and hKAT II. A wealth of pharmacological data highlight hKAT II as a sensible target for the treatment of neuropathological conditions characterized by a kynurenic acid excess, such as schizophrenia and cognitive impairment. We have solved the structure of human KAT II by means of the single-wavelength anomalous dispersion method at 2.3-Å resolution. Although closely resembling the classical aminotransferase fold, the hKAT II architecture displays unique features. Structural comparison with a prototypical aspartate aminotransferase reveals a novel antiparallel strand-loopstrand motif that forms an unprecedented intersubunit -sheet in the functional hKAT II dimer. Moreover, the N-terminal regions of hKAT II and aspartate aminotransferase appear to have converged to highly similar although 2-fold symmetry-related conformations, which fulfill the same functional role. A detailed structural comparison of hKAT I and hKAT II reveals a larger and more aliphatic character to the active site of hKAT II due to the absence of the aromatic cage involved in ligand binding in hKAT I. The observed structural differences could be exploited for the rational design of highly selective hKAT II inhibitors.Kynurenic acid (KYNA) 3 is one of the neuroactive metabolites of the kynurenine pathway, the main route of oxidative tryptophan degradation in most living organisms (1). At concentrations recorded in the mammalian brain, KYNA antagonizes both the ␣7 nicotinic acetylcholine receptor (␣7-nAChR) and the glycine co-agonist site of N-methyl-D-aspartate (NMDA) receptor, suggesting possible functions in brain physiology (2-5). Notably, given the critical role played by ␣7-nAChR and NMDA receptors in the brain, abnormal KYNA disposition may contribute to the pathogenesis and progression of neurological or psychiatric diseases that are associated with impaired cholinergic and/or glutamatergic neurotransmission (6). Indeed, reductions in endogenous brain KYNA lead to augmented neuronal vulnerability to NMDA receptor-mediated excitotoxic insults (7), whereas pharmacologically induced increases in KYNA provide neuronal protection against ischemic damage and have anticonvulsant effects (8, 9). Neurochemical studies show that KYNA-induced inhibition of ␣7-nAChRs causes a reduction in glutamate release and, secondarily, a decrease in extracellular dopamine levels (10). Inhibition of KYNA formation, on the other hand, results in an elevation in striatal dopamine levels, indicating a bi-directional modulation of dopaminergic neurotransmission by KYNA (11,12). Taken together, these and other supportive data from animals and humans (13-16) suggest that KYNA may play a pathophysiologically significant role in the onset and progression of catastrophic brain diseases that ar...
Nicotinamide/nicotinic acid mononucleotide adenylyltransferase (NMNAT) has long been known as the master enzyme in NAD biosynthesis in living organisms. A burst of investigations on NMNAT, going beyond enzymology, have paralleled increasing discoveries of key roles played by NAD homeostasis in a number or patho-physiological conditions. The availability of in-depth kinetics and structural enzymology analyses carried out on NMNATs from different organisms offer a powerful tool for uncovering fascinating evolutionary relationships. On the other hand, additional functions featuring NMNAT have emerged from investigations aimed at unraveling the molecular mechanisms responsible for complex biological phenomena such as neurodegeneration. NMNAT appears to be a multifunctional protein that sits both at the core of central metabolism and at a crossroads of multiple cellular processes. The resultant wealth of biochemical data has built a robust framework upon which design of NMNAT activators, inhibitors or enzyme variants of potential medical interest can be based.
NADP is essential for biosynthetic pathways, energy, and signal transduction. In living organisms, NADP biosynthesis proceeds through the phosphorylation of NAD with a reaction catalyzed by NAD kinase. We expressed, purified, and characterized Bacillus subtilis NAD kinase. This enzyme represents a new member of the inorganic polyphosphate [poly(P)]/ATP NAD kinase subfamily, as it can use poly(P), ATP, or other nucleoside triphosphates as phosphoryl donors. NAD kinase showed marked positive cooperativity for the substrates ATP and poly(P) and was inhibited by its product, NADP, suggesting that the enzyme plays a major regulatory role in NADP biosynthesis. We discovered that quinolinic acid, a central metabolite in NAD(P) biosynthesis, behaved like a strong allosteric activator for the enzyme. Therefore, we propose that NAD kinase is a key enzyme for both NADP metabolism and quinolinic acid metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.