The hallmarks of insulin action are the stimulation and suppression of anabolic and catabolic responses, respectively. These responses are orchestrated by the insulin pathway and are initiated by the binding of insulin to the insulin receptor, which leads to activation of the receptor's intrinsic tyrosine kinase. Severe defects in the insulin pathway, such as in types A and B and advanced type 1 and 2 diabetes lead to severe insulin resistance, resulting in a partial or complete absence of response to exogenous insulin and other known classes of antidiabetes therapies. We have characterized a novel class of arylalkylamine vanadium salts that exert potent insulin-mimetic effects downstream of the insulin receptor in adipocytes. These compounds trigger insulin signaling, which is characterized by rapid activation of insulin receptor substrate-1, Akt, and glycogen synthase kinase-3 independent of insulin receptor phosphorylation. Administration of these compounds to animal models of diabetes lowered glycemia and normalized the plasma lipid profile. Arylalkylamine vanadium compounds also showed antidiabetic effects in severely diabetic rats with undetectable circulating insulin. These results demonstrate the feasibility of insulin-like regulation in the complete absence of insulin and downstream of the insulin receptor. This represents a novel therapeutic approach for diabetic patients with severe insulin resistance. Diabetes 56: 486 -493, 2007
Aims/hypothesis. Vascular adhesion protein-1 (VAP-1), which is identical to semicarbazide-sensitive amine oxidase (SSAO), is a dual-function membrane protein with adhesion properties and amine oxidase activity. A soluble form of VAP-1 is found in serum, where concentrations are enhanced in diabetes and obesity. In vitro, soluble VAP-1 enhances lymphocyte adhesion to endothelial cells, thus possibly participating in the enhanced lymphocyte adhesion capacity that is implicated in the cardiovascular complications associated with diabetes or obesity. In both, the tissue origin of the soluble VAP-1/SSAO is unknown. We examined whether adipose tissue, which has abundant expression of VAP-1/SSAO, is a source of soluble VAP-1. Methods. We detected VAP-1/SSAO in plasma of diabetic animals, with or without VAP-1 immunoprecipitation, and in culture medium from 3T3-L1 adipocytes and human adipose tissue explants. VAP-1 protein glycosylation was measured.Results. Diabetic and obese animals have increased plasma SSAO activity associated with VAP-1 protein.We also found that 3T3-L1 adipocytes and human adipose tissue explants release a soluble form of VAP-1/SSAO, which derives from the membrane. The release of soluble VAP-1 was enhanced by exposure of murine and human adipocytes to TNF-α and blocked by batimastat, a metalloprotease inhibitor. Partial ablation of adipose tissue reduced plasma SSAO activity in normal and diabetic rats.
We previously reported that substrates of semicarbazide-sensitive amine oxidase in combination with low concentrations of vanadate exert potent insulin-like effects. Here we performed homology modeling of the catalytic domain of mouse SSAO/VAP-1 and searched through chemical databases to identify novel SSAO substrates. The modeling of the catalytic domain revealed that aromatic residues Tyr384, Phe389, and Tyr394 define a pocket of stable size that may participate in the binding of apolar substrates. We identified a number of amines as substrates of human, rat, and mouse SSAO. The compounds PD0119035, 2,3-dimethoxy-benzylamine, and C-naphthalen-1-yl-methylamine showed high affinity as substrates of rat SSAO. C-Naphthalen-1-yl-methylamine was the only substrate that showed high affinity for human SSAO. C-Naphthalen-1-yl-methylamine and 4-aminomethyl-benzenesulfonamide showed the highest capacity to stimulate glucose transport in isolated rat adipocytes. The impact of these findings on the development of new treatments for diabetes is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.