Chirality-induced spin selectivity (CISS), the effect of helical molecules acting as room temperature hard magnets that confer spin polarization to electrical current, is an intriguing effect with potential applications in nanospintronics. In this scenario, molecules that are paramagnetic as well as helical would introduce a new degree of freedom in the same nano-scale device that has not been explored so far. Here, in order to investigate this idea, we propose the preparation of self-assembled monolayers (SAMs) based on a helical lanthanide binding tag peptide (LnLBTC) on a ferromagnetic substrate. We confirmed room temperature spin filtering of LnLBTC SAMs by well-established electrochemical approach and by direct local spin transport measurements in solid state devices. The latter were studied by a common liquid-metal drop electron transport system, easily implemented for spin dependent measurements. Electrochemistry shows an averaged spin polarization (SP) of ~5% in presence of a saturation magnetic field (H = 350 mT) while local measurements performed in solid state showed a SP of ~50 20% thanks to the reduction of the contribution of pure electron transport in non-covered areas. Calculations showed that conduction electrons interact strongly with the coordinated lanthanide ion, meaning a fixed chirality-based spin filtering can coexist with a spin filtering that is dependent on the polarization of the magnetic metal ion. This opens the door to all-organic single-molecule memristive devices.
We employ a python computational tool to compare 3 relevant case studies with increasingly complex ground states: vanadyl complexes, Ho(iii) square antiprisms and Ho(iii) cubic structures.
Three decades of research in molecular nanomagnets have raised their magnetic memories from liquid helium to liquid nitrogen temperature thanks to a wise choice of the magnetic ion and coordination environment. Still, serendipity and chemical intuition played a main role. In order to establish a powerful framework for statistically driven chemical design, here we collected chemical and physical data for lanthanide-based nanomagnets, catalogued over 1400 published experiments, developed an interactive dashboard (SIMDAVIS) to visualise the dataset, and applied inferential statistical analysis. Our analysis shows that the Arrhenius energy barrier correlates unexpectedly well with the magnetic memory. Furthermore, as both Orbach and Raman processes can be affected by vibronic coupling, chemical design of the coordination scheme may be used to reduce the relaxation rates. Indeed, only bis-phthalocyaninato sandwiches and metallocenes, with rigid ligands, consistently present magnetic memory up to high temperature. Analysing magnetostructural correlations, we offer promising strategies for improvement, in particular for the preparation of pentagonal bipyramids, where even softer complexes are protected against molecular vibrations.
Viruses are obligate intracellular parasites that have co-evolved with their hosts to establish an intricate network of protein–protein interactions. Here, we followed a high-throughput yeast two-hybrid screening to identify 378 novel protein–protein interactions between turnip mosaic virus (TuMV) and its natural host Arabidopsis thaliana. We identified the RNA-dependent RNA polymerase NIb as the viral protein with the largest number of contacts, including key salicylic acid-dependent transcription regulators. We verified a subset of 25 interactions in planta by bimolecular fluorescence complementation assays. We then constructed and analyzed a network comprising 399 TuMV-A. thaliana interactions together with intravirus and intrahost connections. In particular, we found that the host proteins targeted by TuMV are enriched in different aspects of plant responses to infections, are more connected and have an increased capacity to spread information throughout the cell proteome, display higher expression levels, and have been subject to stronger purifying selection than expected by chance. The proviral or antiviral role of ten host proteins was validated by characterizing the infection dynamics in the corresponding mutant plants, supporting a proviral role for the transcriptional regulator TGA1. Comparison with similar studies with animal viruses, highlights shared fundamental features in their mode of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.