Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by the combined occurrence of parathyroid, pancreatic islet and anterior pituitary tumours. To facilitate a screening programme for MEN1, we investigated 709 people (364 males and 345 females, age range 1-84 years) from 62 MEN1 families, and 36 non-familial MEN1 patients. Of those investigated, 220 (95 males and 125 females, age range 8-79 years) suffered from MEN1. Parathyroid, pancreatic and pituitary tumours occurred in 95%, 41% and 30% of the patients, respectively. Parathyroid tumours were the first manifestation of MEN1 in 87% of patients, and amongst the pituitary and pancreatic tumours, somatotrophinomas and gastrinomas were more common in patients above the age of 40 years, whilst insulinomas occurred more frequently in patients below the age of 40 years. Biochemical screening indicated that the penetrance of MEN1 by the ages of 20, 35 and 50 years was 43%, 85% and 94%, respectively, and that the development of MEN1 was confined to first-degree relatives in 91% of patients and to second-degree relatives in 9% of patients. These findings have helped to define a proposed screening programme for MEN1.
Autotaxin (ATX) or ecto-nucleotide pyrophosphatase/phosphodiesterase-2 (ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemo-attractant for many cell types. ATX-LPA signaling has roles in various pathologies including tumour progression and inflammation. However, the molecular basis of substrate recognition and catalysis, and the mechanism of interaction with target cells, has been elusive. Here we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We identify a hydrophobic lipid-binding pocket and map key residues required for catalysis and selection between nucleotide and phospholipid substrates. We show that ATX interacts with cell-surface integrins via its N-terminal somatomedin-B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling, and enable new approaches to target ATX with small-molecule therapeutics.
Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four -trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in -trefoil domains 1 and 3. The site in -trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in -trefoil-3 is related by pseudo-2-fold symmetry to that in -trefoil-1. The two sites are ϳ5 nm apart, resulting in a distance between actin filaments in the bundle of ϳ8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.
Summary The mechanisms by which cells destabilize and rapidly disassemble filamentous actin networks have remained elusive; however, Coronin, Cofilin, and AIP1 have been implicated in this process. Here, using multi-wavelength single molecule fluorescence imaging, we show that mammalian Cor1B, Cof1, and AIP1 work in concert through a temporally ordered pathway to induce highly efficient severing and disassembly of actin filaments. Cor1B binds to filaments first, and dramatically accelerates the subsequent binding of Cof1, leading to heavily decorated, stabilized filaments. Cof1 in turn recruits AIP1, which rapidly triggers severing and remains bound to the newly-generated barbed ends. New growth at barbed ends generated by severing was blocked specifically in the presence of all three proteins. This activity enabled us to reconstitute and directly visualize single actin filaments being rapidly polymerized by formins at their barbed ends while simultanteously being stochastically severed and capped along their lengths, and disassembled from their pointed ends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.