The identification of the genes associated with chromosomal translocation breakpoints has fundamentally changed our understanding of the molecular basis of hematological malignancies. By contrast, the study of chromosomal deletions has been hampered by the large number of genes deleted and the complexity of their analysis. We report the generation of a mouse model for the human 5q− syndrome using large-scale chromosomal engineering. Haploinsufficiency of the Cd74 – Nid67 interval (containing the Ribosomal protein S14 gene – Rps14) causes macrocytic anemia, prominent erythroid dysplasia and monolobulated megakaryocytes in the bone marrow. This is associated with defective bone marrow progenitor development, increased apoptosis and the appearance of bone marrow cells expressing high levels of p53. Notably, intercrossing with p53-deficient mice, completely rescues the progenitor cell defect, restoring CMP/MEP, GMP and HSC bone marrow populations. This novel mouse model suggests that a p53-dependent mechanism underlies the pathophysiology of the 5q− syndrome.
Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the label-free determination and quantification of relevant small biometabolites that are hard to identify by conventional immunological methods, in the absence of labelling. In this work, detection is based on monitoring the vibrational changes occurring at a specific biointerface (a monoclonal antibody, mAb) supported on silver-coated carbon nanotubes (CNT@Ag). Engineered CNT@Ag play a key role, as they offer a stable substrate to support the biointerface, with a high density of hot spots. Proof of concept is demonstrated through the analysis and quantification of the main cocaine metabolite benzoylecgonine. These results open a new avenue toward the generation of portable sensors for fast ultradetection and quantification of relevant metabolites. The use of discrete particles (CNT@Ag@mAb) rather than rough films, or other conventional SERS supports, will also enable a safe remote interrogation of highly toxic sources in environmental problems or in biological fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.