Liquid biopsy analysis represents a powerful and noninvasive tool to uncover biomarkers for disseminated disease assessment and longitudinal monitoring of patients. Herein, we explored the value of circulating and disseminated tumor cells (CTC and DTC, respectively) and cell‐free DNA (cfDNA) in pediatric rhabdomyosarcoma (RMS). Peripheral blood and bone marrow samples were analyzed to detect and enumerate CTC and DTC, respectively. We used the epithelial cellular adhesion molecule (EpCAM)‐based CellSearch platform coupled with an automatic device to collect both EpCAM‐positive and EpCAM‐low/negative CTCs. The standard assay was implemented, including the mesenchymal marker desmin. For selected cases, we molecularly profiled primary tumors and liquid biopsy biomarkers using whole‐exome sequencing and droplet digital PCR, respectively. RMS patients with metastatic disease had a significantly higher number of CTCs compared to those with localized disease, whereas DTCs were detected independently of disease presentation. The use of the desmin marker remarkably increased the identification of CTCs and DTCs in RMS samples. Of note, CTC clusters were detected in RMS patients with disseminated disease. Further, cfDNA and CTC molecular features closely reflected the molecular makeup of primary tumors and informed of disease course.
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma characterized by a very poor prognosis when relapses occur after front-line therapy. Therefore, a major challenge for patients’ management remains the identification of markers associated with refractory and progressive disease. In this context, cancer autoantibodies are natural markers of disease onset and progression, useful to unveil novel therapeutic targets. Herein, we matched autoantibody profiling of alveolar RMS (ARMS) patients with genes under regulatory control of PAX3-FOXO1 transcription factor and revealed fibroblast growth factor 8 (FGF8) as a novel ARMS tumor antigen of diagnostic, prognostic, and therapeutic potential. We demonstrated that high levels of FGF8 autoantibodies distinguished ARMS patients from healthy subjects and represented an independent prognostic factor of better event-free survival. FGF8 was overexpressed in ARMS tumors compared to other types of pediatric soft tissue sarcomas, acting as a positive regulator of cell signaling. Indeed, FGF8 was capable of stimulating ARMS cells migration and expression of pro-angiogenic and metastasis-related factors, throughout MAPK signaling activation. Of note, FGF8 was found to increase in recurrent tumors, independently of PAX3-FOXO1 expression dynamics. Risk of recurrence correlated positively with FGF8 expression levels at diagnosis and reduced FGF8 autoantibodies titer, almost as if to suggest a failure of the immune response to control tumor growth in recurring patients. This study provides evidence about the crucial role of FGF8 in ARMS and the protective function of natural autoantibodies, giving new insights into ARMS biology and laying the foundations for the development of new therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.