Central tolerance to tumor-associated Ags is an immune-escape mechanism that significantly limits the TCR repertoires available for tumor eradication. The repertoires expanded in wild-type BALB/c and rat-HER-2/neu (rHER-2) transgenic BALB-neuT mice following DNA immunization against rHER-2 were compared by spectratyping the variable (V)β and the joining (J)β CDR 3. Following immunization, BALB/c mice raised a strong response. Every mouse used one or more CD8+ T cell rearrangements of the Vβ9-Jβ1.2 segments characterized by distinct length of the CDR3 and specific for 63-71 or 1206-1214 rHER-2 peptides. In addition, two CD4+ T cell rearrangements recurred in >50% of mice. Instead, BALB-neuT mice displayed a limited response to rHER-2. Their repertoire is smaller and uses different rearrangements confined to CD4+ T cells. Thus, central tolerance in BALB-neuT mice acts by silencing the BALB/c mice self-reactive repertoire and reducing the size of the CD8+ T cell component. CD8+ and CD4+ T cells from both wild-type and transgenic mice home to tumors. This definition of the T cell repertoires available is critical to the designing of immunological maneuvers able to elicit an effective immune reaction against HER-2-driven carcinogenesis.
We have shown that electroporation of plasmid carrying extracellular and transmembrane domains (EC-TM plasmid) encoded by the rat neu oncogene triggers a protective immune response toward rat p185(neu)-positive tumors in both wild-type BALB/c mice and cancer-prone rat neu-transgenic BALB-neuT mice. To identify the critical fragments that confer this protective immunity, mice were electroporated with plasmids encoding the TM domain associated with decreasing fragments of the EC domain and the antitumor protection afforded, the titer of antibody, and cytotoxic T lymphocyte (CTL) activity elicited to Neu protein were evaluated. Plasmids encoding EC fragments shortened by 70 (EC1-TM plasmid), 150 (EC2-TM), 230 (EC3-TM), 310 (EC4-TM), and 390 (EC5-TM) NH(2)-terminal residues afforded effective protection. Plasmids encoding shorter truncated proteins were ineffective. When the immunogenic protein was retained in the cytoplasm (EC1-TM, EC2-TM, and EC5-TM), only a CTL response was elicited, whereas when it was also expressed on the membrane (EC4-TM) both CTLs and antibodies were induced. EC4-TM encoding a truncated protein with an EC portion of only 344 amino acids conferred protection on both BALB/c and BALB-neuT mice comparable to that of EC-TM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.