Lithium is widely used to treat bipolar disorder, but its mechanism of action in this disorder is unknown. Several molecular targets of lithium have been identified, but these putative targets have not been shown to be responsible for the behavioral effects of lithium in vivo. A robust model for the effects of chronic lithium on behavior in mice would greatly facilitate the characterization of lithium action. We describe behaviors in mice that are robustly affected by chronic lithium. Remarkably, these lithium-sensitive behaviors are also observed in mice lacking one copy of the gene encoding glycogen synthase kinase-3 (Gsk-3), a well established direct target of lithium. In addition, chronic lithium induces molecular changes consistent with inhibition of GSK-3 within regions of the brain that are paralleled in Gsk-3 ϩ/Ϫ heterozygous mice. We also show that lithium therapy activates Wnt signaling in vivo, as measured by increased Wntdependent gene expression in the amygdala, hippocampus, and hypothalamus. These observations support a central role for GSK-3 in mediating behavioral responses to lithium.
TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.
The p53 tumor suppressor belongs to a family of proteins that sense multiple cellular inputs to regulate cell proliferation, apoptosis, and differentiation. Whether and how these functions of p53 intersect with the activity of extracellular growth factors is not understood. Here, we report that key cellular responses to TGF-beta signals rely on p53 family members. During Xenopus embryonic development, p53 promotes the activation of multiple TGF-beta target genes. Moreover, mesoderm differentiation is inhibited in p53-depleted embryos. In mammalian cells, the full transcriptional activation of the CDK inhibitor p21(WAF1) by TGF-beta requires p53. p53-deficient cells display an impaired cytostatic response to TGF-beta signals. Smad and p53 protein complexes converge on separate cis binding elements on a target promoter and synergistically activate TGF-beta induced transcription. p53 can physically interact in vivo with Smad2 in a TGF-beta-dependent fashion. The results unveil a previously unrecognized link between two primary tumor suppressor pathways in vertebrates.
Three closely related mammalian R-Smads, namely Smad1, Smad5 and Smad8, are activated by BMP receptors. Here we have taken a genetic approach to further dissect their possibly unique and/or shared roles during early mouse development. A Smad8.LacZ reporter allele was created to visualize Smad8 expression domains. Smad8 is initially expressed only in the visceral yolk sac (VYS) endoderm and shows a highly restricted pattern of expression in the embryo proper at later stages. In addition, Smad8 conditional and null alleles were engineered. All alleles clearly demonstrate that adult Smad8 homozygous mutants are viable and fertile. To elucidate gene dosage effects, we manipulated expression ratios of the three BMP R-Smads. Smad8 homozygotes also lacking one copy of Smad1 or Smad5 did not exhibit overt phenotypes, and the tissue disturbances seen in Smad1 or Smad5 null embryos were not exacerbated in the absence of Smad8. However, we discovered a profound genetic interaction between Smad1 and Smad5. Thus, as for Smad1 and Smad5 mutant embryos, Smad1+/-:Smad5+/- double heterozygotes die by E10.5 and display defects in allantois morphogenesis, cardiac looping and primordial germ cell (PGC) specification. These experiments demonstrate for the first time that Smad1 and Smad5 function cooperatively to govern BMP target gene expression in the early mammalian embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.