The quality and composition of bitter orange essential oils (EOs) strongly depend on the ripening stage of the citrus fruit. The concentration of volatile compounds and consequently its organoleptic perception varies. While this can be detected by trained humans, we propose an objective approach for assessing the bitter orange from the volatile composition of their EO. The method is based on the combined use of headspace gas chromatography–mass spectrometry (HS-GC-MS) and artificial neural networks (ANN) for predictive modeling. Data obtained from the analysis of HS-GC-MS were preprocessed to select relevant peaks in the total ion chromatogram as input features for ANN. Results showed that key volatile compounds have enough predictive power to accurately classify the EO, according to their ripening stage for different applications. A sensitivity analysis detected the key compounds to identify the ripening stage. This study provides a novel strategy for the quality control of bitter orange EO without subjective methods.
This work presents a novel and rapid approach to predict fat content in butter products based on nuclear magnetic resonance longitudinal (T1) relaxation measurements and multi-block chemometric methods. The potential of using simultaneously liquid (T1L) and solid phase (T1S) signals of fifty samples of margarine, butter and concentrated fat by Sequential and Orthogonalized Partial Least Squares (SO-PLS) and Sequential and Orthogonalized Selective Covariance Selection (SO-CovSel) methods was investigated. The two signals (T1L and T1S) were also used separately with PLS and CovSel regressions. The models were compared in term of prediction errors (RMSEP) and repeatability error (σrep). The results obtained from liquid phase (RMSEP ≈ 1.33% and σrep≈ 0.73%) are better than those obtained with solid phase (RMSEP ≈ 5.27% and σrep≈ 0.69%). Multiblock methodologies present better performance (RMSEP ≈ 1.00% and σrep≈ 0.47%) and illustrate their power in the quantitative analysis of butter products. Moreover, SO-Covsel results allow for proposing a measurement protocol based on a limited number of NMR acquisitions, which opens a new way to quantify fat content in butter products with reduced analysis times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.