Protein kinases represent promising anticancer drug targets. We describe here the meriolins, a new family of inhibitors of cyclin-dependent kinases (CDK). Meriolins represent a chemical structural hybrid between meridianins and variolins, two families of kinase inhibitors extracted from various marine invertebrates. Variolin B is currently in preclinical evaluation as an antitumor agent. A selectivity study done on 32 kinases showed that, compared with variolin B, meriolins display enhanced specificity toward CDKs, with marked potency on CDK2 and CDK9. The structures of pCDK2/cyclin A/variolin B and pCDK2/cyclin A/meriolin 3 complexes reveal that the two inhibitors bind within the ATP binding site of the kinase, but in different orientations. Meriolins display better antiproliferative and proapoptotic properties in human tumor cell cultures than their parent molecules, meridianins and variolins. Phosphorylation at CDK1, CDK4, and CDK9 sites on, respectively, protein phosphatase 1A, retinoblastoma protein, and RNA polymerase II is inhibited in neuroblastoma SH-SY5Y cells exposed to meriolins. Apoptosis triggered by meriolins is accompanied by rapid Mcl-1 down-regulation, cytochrome c release, and activation of caspases. Meriolin 3 potently inhibits tumor growth in two mouse xenograft cancer models, namely, Ewing's sarcoma and LS174T colorectal carcinoma. Meriolins thus constitute a new CDK inhibitory scaffold, with promising antitumor activity, derived from molecules initially isolated from marine organisms. [Cancer Res 2007;67(17):8325-34]
Tumors of the Ewing's sarcoma family (ESFT), such as Ewing's sarcoma (EWS) and primitive neuroectodermal tumors (PNET), are highly aggressive malignancies predominantly affecting children and young adults. ESFT express chimeric transcription factors encoded by hybrid genes fusing the EWS gene with several ETS genes, most commonly FLI-1. EWS/FLI-1 proteins are responsible for the malignant phenotype of ESFT, but only few of their transcriptional targets are known. Using antisense and short hairpin RNA-mediated gene expression knockdown, array analyses, chromatin immunoprecipitation methods, and reexpression studies, we show that caveolin-1 (CAV1) is a new direct target of EWS/FLI-1 that is overexpressed in ESFT cell lines and tumor specimens and is necessary for ESFT tumorigenesis. CAV1 knockdown led to up-regulation of Snail and the concomitant loss of E-cadherin expression. Consistently, loss of CAV1 expression inhibited the anchorage-independent growth of EWS cells and markedly reduced the growth of EWS cell-derived tumors in nude mice xenografts, indicating that CAV1 promotes the malignant phenotype in EWS carcinogenesis. Reexpression of CAV1 or E-cadherin in CAV1 knockdown EWS cells rescued the oncogenic phenotype of the original EWS cells, showing that the CAV1/Snail/E-cadherin pathway plays a central role in the expression of the oncogenic transformation functions of EWS/ FLI-1. Overall, these data identify CAV1 as a key determinant of the tumorigenicity of ESFT and imply that targeting CAV1 may allow the development of new molecular therapeutic strategies for ESFT patients.
Activation of the small GTPase RHOA has strong oncogenic effects in many tumor types, although its role in colorectal cancer remains unclear. Here we show that RHOA inactivation contributes to colorectal cancer progression/metastasis, largely through the activation of Wnt/β-catenin signaling. RhoA inactivation in the murine intestine accelerates the tumorigenic process and in human colon cancer cells leads to the redistribution of β-catenin from the membrane to the nucleus and enhanced Wnt/β-catenin signaling, resulting in increased proliferation, invasion and de-differentiation. In mice, RHOA inactivation contributes to colon cancer metastasis and reduced RHOA levels were observed at metastatic sites compared to primary human colon tumors. Therefore, we have identified a new mechanism of activation of Wnt/β-catenin signaling and characterized the role of RHOA as a novel tumor suppressor in colorectal cancer. These results constitute a shift from the current paradigm and demonstrate that RHO GTPases can suppress tumor progression and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.