Omega-3 supplementation is associated with an improvement of attentional and physiological functions, particularly those involving complex cortical processing. These findings are discussed in terms of the influence of Omega-3 on the central nervous system.
In this study were examined differences in attentional style of athletes engaged in two open skill sports requiring high reactivity (karate and volleyball) in groups with high or low experience. 42 healthy men, 24 volleyball players, 12 of High Experience (first division Italian League players whose M age was 28 yr. (SD=5) and 12 of Low Experience (prejunior Italian team athletes whose M age was 19 yr. (SD= 2). and 18 karateka, 9 of High Experience (3rd and 4th dan black belt athletes whose M age was 31 yr., SD=5) and 9 of Low Experience (1st and 2nd dan black belt karateka whose M age was 32 yr., SD=5). Tests involved different types of attention: Alert, Go/No-Go, Divided Attention, and Working Memory. For each one, the reaction time (RT), variability, change in RT, and number of errors were analysed. Karateka of High Experience reacted faster than those of Low Experience on the simple RT test, Alert (M RT: 204 vs 237 msec., p< .01), while on the Divided Attention test, the High Experience subjects performed more poorly and committed more errors (M errors: 4.89 vs 1.44, p <.003). Young volleyball players of Low Experience reacted faster than colleagues of High Experience on the Alert (M RT: 187 vs 210 msec., p<.01) and Divided Attention tests (M RT: 590 vs 688 msec., p<.001) but committed more errors (Divided Attention test, M errors: 6.50 vs 3.08, p<.007). For the Divided Attention and Working Memory tests, correlations were positive among errors, RT, and RT variability but only for volleyball athletes of High Experience, suggesting they showed higher attention and stability in complex reactions than the group with Low Experience. No significant correlations were noted for either group of karateka on complex reactions. Results suggested that the attentional resources were engaged in different ways in the two groups of athletes and, in each group, there were differences between persons of High and Low Experience.
To test the effect of imagery in the training of skilled movements, an experiment was designed in which athletes learned a new motor action and trained themselves for a month either by overt action or by mental imagery of the action. The experiment was carried out with 30 male karateka (M age = 35 yr., SD = 8.7; M years of practice = 6, SD = 3) instructed to perform an action (Ura-Shuto-Uchi) that they had not previously learned. The athletes were divided into three groups: Untrained (10 subjects who did not perform any training), Action Trained (10 subjects who performed Ura-Shuto-Uchi training daily for 16 minutes), and Mental Imagery (10 subjects who performed mental imagery training of Ura-Shuto-Uchi daily for 16 minutes). The subjects were tested five times, once every 7 days. During each test, they performed a series of 60 motor action trials. In Tests 1, 3, and 5, they also performed a series of 60 mental imagery trials. During the trials, an electroencephalogram (EEG), electromyography (EMG), muscle strength and power, and other physiological parameters were recorded. The results differed by group. Untrained subjects did not show significant effects. In the Action Trained group, training had an effect on reactivity and movement speed, with a reduction of EMG activation and reaction times. Moreover, muscle strength, power, and work increased significantly. The Mental Imagery group showed the same effects on muscle strength, power, and work, but changes in reactivity were not observed. In the Mental Imagery group, the study of Movement Related Brain Macropotentials indicated a progressive modification of the profile of the waves from Test 1 to Test 5 during imagery, showing significant variations of the amplitude of the waves related to the premotor and motor execution periods. Results show that motor imagery can influence muscular abilities such as strength and power and can modify Movement Related Brain Macropotentials, the profile of which potentially could be used to verify the effectiveness of motor imagery training.
Supplementation with O3 + P may be effective in improving mood state and reactivity. The reaction time reduction appears to be due to a central nervous system effect, as shown by the reduced latency of movement-related brain macropotentials and EMG activation. These results are in line with previous experiments.
Heart rate and heart-rate variability (HRV) were studied through a set of different methods in high (highs) and low hypnotizable subjects (lows) not receiving any deliberate hypnotic induction in basal conditions (simple relaxation) and during nociceptive-pressor stimulation with and without suggestions of analgesia. ANOVA did not reveal any difference between highs and lows for heart rate and for the HRV indexes extracted from the series of the interbeat intervals (RR) of the ECG in the frequency (spectral analysis) and time domain (standard deviation, Poincare plot) in both basal and stimulation conditions. Factors possibly accounting for the results and likely responsible for an underestimation of group differences are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.