Microbiomes are vast communities of microbes and viruses that populate all natural ecosystems. Viruses have been considered the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared to other environments. Here we investigate the origin, evolution, and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboratory, we obtained DNA sequences of crAssphage from over one-third of the world's countries, and showed that its phylogeography is locally clustered within countries, cities, and individuals. We also found colinear crAssphage-like genomes in both Old-World and New-World primates, challenging genomic mosaicism and suggesting that the association of crAssphage with primates may be millions of years old. We conclude that crAssphage is a benign globetrotter virus that may have co-evolved with the human lineage and an integral part of the normal human gut virome.
Microbiomes are vast communities of microbes and viruses that populate all natural ecosystems. Viruses have been considered the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared to other environments. Here we investigate the origin, evolution, and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboratory, we obtained DNA sequences of crAssphage from over one-third of the world's countries, and showed that its phylogeography is locally clustered within countries, cities, and individuals. We also found colinear crAssphage-like genomes in both Old-World and New-World primates, challenging genomic mosaicism and suggesting that the association of crAssphage with primates may be millions of years old. We conclude that crAssphage is a benign globetrotter virus that may have co-evolved with the human lineage and an integral part of the normal human gut virome.
Bacterial toxins are food safety hazards causing about 10% of all reported foodborne outbreaks in Europe. Pertinent to Gram‐positive pathogens, the most relevant toxins are emetic toxin and diarrheal enterotoxins of Bacillus cereus, neurotoxins of Clostridium botulinum, enterotoxin of Clostridium perfringens, and a family of enterotoxins produced by Staphylococcus aureus and some other staphylococci. These toxins are the most important virulence factors of respective foodborne pathogens and a primary cause of the related foodborne diseases. They are proteins or peptides that differ from each other in their size, structure, toxicity, toxicological end points, solubility, and stability, types of food matrix to which they are mostly related to. These differences influence the characteristics of required detection methods. Therefore, detection of these toxins in food samples, or detection of toxin production capacity in the bacterial isolate, remains one of the cornerstones of microbial food analysis and an essential tool in understanding the relevant properties of these toxins. Advanced research has led into new insights of the incidence of toxins, mechanisms of their production, their physicochemical properties, and their toxicological mode of action and dose‐response profile. This review focuses on biological, immunological, mass spectrometry, and molecular assays as the most commonly used detection and quantification methods for toxins of B. cereus, C. botulinum, C. perfringens, and S. aureus. Gathered and analyzed information provides a comprehensive blueprint of the existing knowledge on the principles of these assays, their application in food safety, limits of detection and quantification, matrices in which they are applicable, and type of information they provide to the user.
The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater produced interest in its use for sentinel surveillance at a community level and as a complementary approach to syndromic surveillance. With this work, we set the foundations for wastewater-based epidemiology (WBE) in Portugal by monitoring the trends of SARS-CoV-2 RNA circulation in the community, on a nationwide perspective during different epidemiological phases of the pandemic. The Charité assays (E_Sarbecco, RdRP, and N_Sarbecco) were applied to monitor, over 32-weeks (April to December 2020), the dynamics of SARS-CoV-2 RNA at the inlet of five wastewater treatment plants (WWTP), which together serve more than two million people in Portugal. Raw wastewater from three Coronavirus disease 2019 (COVID-19) reference hospitals was also analyzed during this period. In total, more than 600 samples were tested. For the first weeks, detection of SARS-CoV-2 RNA was sporadic, with concentrations varying from 10 3 to 10 5 genome copies per liter (GC/L). Prevalence of SARS-CoV-2 RNA increased steeply by the end of May into late June, mainly in Lisboa e Vale do Tejo region (LVT), during the reopening phase. After the summer, with the reopening of schools in mid-September and return to partial face-to-face work, a pronounced increase of SARS-CoV-2 RNA in wastewater was detected. In the LVT area, SARS-CoV-2 RNA load agreed with reported trends in hotspots of infection. Synchrony between trends of SARS-CoV-2 RNA in raw wastewater and daily new COVID-19 cases highlights the value of WBE as a surveillance tool, particularly after the phasing out of the epidemiological curve and when hotspots of disease re-emerge in the population which might be difficult to spot based solely on syndromic surveillance and contact tracing. This is the first study crossing several epidemiological stages highlighting the long-term use of WBE for SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.