The application of structure-based in silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human G protein-coupled receptors (GPCRs), one of the most important families of drug targets, where in the absence of x-ray structures, one has to rely on in silico 3D models. We report repeated success in using ab initio in silico GPCR models, generated by the PREDICT method, for blind in silico screening when applied to a set of five different GPCR drug targets. More than 100,000 compounds were typically screened in silico for each target, leading to a selection of <100 ''virtual hit'' compounds to be tested in the lab. In vitro binding assays of the selected compounds confirm high hit rates, of 12-21% (full dose-response curves, K i < 5 M). In most cases, the best hit was a novel compound (New Chemical Entity) in the 1-to 100-nM range, with very promising pharmacological properties, as measured by a variety of in vitro and in vivo assays. These assays validated the quality of the hits as lead compounds for drug discovery. The results demonstrate the usefulness and robustness of ab initio in silico 3D models and of in silico screening for GPCR drug discovery.modeling ͉ in silico screening ͉ structure-based G protein-coupled receptors (GPCRs) are membraneembedded proteins, responsible for communication between the cell and its environment (1). As a consequence, many major diseases, such as hypertension, cardiac dysfunction, depression, anxiety, obesity, inflammation, and pain, involve malfunction of these receptors (2), making them among the most important drug targets for pharmacological intervention (3-5). Thus, whereas GPCRs are only a small subset of the human genome, they are the targets for Ϸ50% of all recently launched drugs (6). As targets of paramount importance, it is expected that drug discovery for GPCRs would benefit from the introduction of computational methodologies (7), especially as these methods can be used in conjunction with such experimental methods as high-throughput screening (8, 9), NMR, and crystallography (10).Unfortunately, GPCRs, like other membrane-embedded proteins, have characteristics that make their 3D structure extremely difficult to determine experimentally. To date, the only GPCR for which a 3D structure was determined by x-ray crystallography is bovine rhodopsin (11), which is unique among GPCRs in that its ligand, retinal, is covalently bound and that it responds to light rather than to ligand binding. Hence, in the case of GPCRs, the limited availability of structural data has forced the computational design of ligands to heavily rely on ligand-based techniques. Indeed, for many GPCRs, the natural ligand can provide a good starting point, leading to useful pharmacophore models that can be used for identifying lead structures with novel scaffolds (6). These methods have been successfully applied for the discovery of peptide agonists to the somatostatin receptor (12) and for...
G-protein coupled receptors (GPCRs) are a major group of drug targets for which only one x-ray structure is known (the nondrugable rhodopsin), limiting the application of structure-based drug discovery to GPCRs. In this paper we present the details of PREDICT, a new algorithmic approach for modeling the 3D structure of GPCRs without relying on homology to rhodopsin. PREDICT, which focuses on the transmembrane domain of GPCRs, starts from the primary sequence of the receptor, simultaneously optimizing multiple 'decoy' conformations of the protein in order to find its most stable structure, culminating in a virtual receptor-ligand complex. In this paper we present a comprehensive analysis of three PREDICT models for the dopamine D2, neurokinin NK1, and neuropeptide Y Y1 receptors. A shorter discussion of the CCR3 receptor model is also included. All models were found to be in good agreement with a large body of experimental data. The quality of the PREDICT models, at least for drug discovery purposes, was evaluated by their successful utilization in in-silico screening. Virtual screening using all three PREDICT models yielded enrichment factors 9-fold to 44-fold better than random screening. Namely, the PREDICT models can be used to identify active small-molecule ligands embedded in large compound libraries with an efficiency comparable to that obtained using crystal structures for non-GPCR targets.
We report the discovery of a novel, potent, and selective amidosulfonamide nonazapirone 5-HT1A agonist for the treatment of anxiety and depression, which is now in Phase III clinical trials for generalized anxiety disorder (GAD). The discovery of 20m (PRX-00023), N-{3-[4-(4-cyclohexylmethanesulfonylaminobutyl)piperazin-1-yl]phenyl}acetamide, and its backup compounds, followed a new paradigm, driving the entire discovery process with in silico methods and seamlessly integrating computational chemistry with medicinal chemistry, which led to a very rapid discovery timeline. The program reached clinical trials within less than 2 years from initiation, spending less than 6 months in lead optimization with only 31 compounds synthesized. In this paper we detail the entire discovery process, which started with modeling the 3D structure of 5-HT1A using the PREDICT methodology, and then performing in silico screening on that structure leading to the discovery of a 1 nM lead compound (8). The lead compound was optimized following a strategy devised based on in silico 3D models and realized through an in silico-driven optimization process, rapidly overcoming selectivity issues (affinity to 5-HT1A vs alpha1-adrenergic receptor) and potential cardiovascular issues (hERG binding), leading to a clinical compound. Finally we report key in vivo preclinical and Phase I clinical data for 20m tolerability, pharmacokinetics, and pharmacodynamics and show that these favorable results are a direct outcome of the properties that were ascribed to the compound during the rational structure-based discovery process. We believe that this is one of the first examples for a Phase III drug candidate that was discovered and optimized, from start to finish, using in silico model-based methods as the primary tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.