The molecular mechanisms controlling inductive events leading to the specification and terminal differentiation of cardiomyocytes are still largely unknown. We have investigated the role of Cripto, an EGF-CFC factor, in the earliest stages of cardiomyogenesis. We find that both the timing of initiation and the duration of Cripto signaling are crucial for priming differentiation of embryonic stem (ES) cells into cardiomyocytes, indicating that Cripto acts early to determine the cardiac fate. Furthermore, we show that failure to activate Cripto signaling in this early window of time results in a direct conversion of ES cells into a neural fate. Moreover, the induction of Cripto activates the Smad2 pathway, and overexpression of activated forms of type I receptor ActRIB compensates for the lack of Cripto signaling in promoting cardiomyogenesis. Finally, we show that Nodal antagonists inhibit Cripto-regulated cardiomyocyte induction and differentiation in ES cells. All together our findings provide evidence for a novel role of the Nodal/Cripto/Alk4 pathway in this process.
Self-renewal of embryonic stem cells (ESCs) is maintained by a complex regulatory mechanism involving transcription factors Oct3/4 (Pou5f1), Nanog and Sox2. Here, we report that Klf5, a Zn-finger transcription factor of the Kruppel-like family, is involved in ESC self-renewal. Klf5 is expressed in mouse ESCs, blastocysts and primordial germ cells, and its knockdown by RNA interference alters the molecular phenotype of ESCs, thereby preventing their correct differentiation. The ability of Klf5 to maintain ESCs in the undifferentiated state is supported by the finding that differentiation of ESCs is prevented when Klf5 is constitutively expressed. Maintenance of the undifferentiated state by Klf5 is, at least in part, due to the control of Nanog and Oct3/4 transcription, because Klf5 directly binds to the promoters of these genes and regulates their transcription.
MicroRNAs (miRNAs) play an important role in proper function and differentiation of mouse embryonic stem cells (ESCs). We performed a systematic comparison of miRNA expression in undifferentiated vs. differentiating ESCs. We report that 138 miRNAs are increased on the induction of differentiation. We compared the entire list of candidate mRNA targets of up-regulated miRNAs with that of mRNA down-regulated in ESCs on induction of differentiation. Among the candidate targets emerging from this analysis, we found three genes, Smarca5, Jarid1b, and Sirt1, previously demonstrated to be involved in sustaining the undifferentiated phenotype in ESCs. On this basis, we first demonstrated that Smarca5 is a direct target of miR-100, Jarid1b of miR-137, and we also confirmed previously published data demonstrating that Sirt1 is a direct target of miR-34a in a different context. The suppression of these three miRNAs by anti-miRs caused the block of ESC differentiation induced by LIF withdrawal. On the other hand, the overexpression of the three miRNAs resulted in an altered expression of differentiation markers. These results demonstrate that miR-34a, miR-100, and miR-137 are required for proper differentiation of mouse ESCs, and that they function in part by targeting Sirt1, Smarca5, and Jarid1b mRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.