Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.
European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non–steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.
Metabolic syndrome is a pathological condition characterized by obesity, hyperglycemia, hypertension, elevated levels of triglycerides and low levels of high-density lipoprotein cholesterol that increase cardiovascular disease risk and type 2 diabetes. Although numerous predisposing genetic risk factors have been identified, the biological mechanisms underlying this complex phenotype are not fully elucidated. Here we introduce a systems biology approach based on network analysis to investigate deregulated biological processes and subsequently identify drug repurposing candidates. A proximity score describing the interaction between drugs and pathways is defined by combining topological and functional similarities. The results of this computational framework highlight a prominent role of the immune system in metabolic syndrome and suggest a potential use of the BTK inhibitor ibrutinib as a novel pharmacological treatment. An experimental validation using a high fat diet-induced obesity model in zebrafish larvae shows the effectiveness of ibrutinib in lowering the inflammatory load due to macrophage accumulation.
Polyphenol-rich foods are part of many nutritional interventions aimed at improving health and preventing cardiometabolic diseases (CMDs). Polyphenols have oxidative, inflammatory, and/or metabolic effects. Research into the chemistry and biology of polyphenol bioactives is prolific but knowledge of their molecular interactions with proteins is limited. We mined public data to (i) identify proteins that interact with or metabolize polyphenols, (ii) mapped these proteins to pathways and networks, and (iii) annotated functions enriched within the resulting polyphenol-protein interactome. A total of 1,395 polyphenols and their metabolites were retrieved (using Phenol-Explorer and Dictionary of Natural Products) of which 369 polyphenols interacted with 5,699 unique proteins in 11,987 interactions as annotated in STITCH, Pathway Commons, and BindingDB. Pathway enrichment analysis using the KEGG repository identified a broad coverage of significant pathways of low specificity to particular polyphenol (sub)classes. When compared to drugs or micronutrients, polyphenols have pleiotropic effects across many biological processes related to metabolism and CMDs. These systems-wide effects were also found in the protein interactome of the polyphenol-rich citrus fruits, used as a case study. In sum, these findings provide a knowledgebase for identifying polyphenol classes (and polyphenol-rich foods) that individually or in combination influence metabolism.
Mathematical biology and pharmacology models have a long and rich history in the fields of medicine and physiology, impacting our understanding of disease mechanisms and the development of novel therapeutics. With an increased focus on the pharmacology application of system models and the advances in data science spanning mechanistic and empirical approaches, there is a significant opportunity and promise to leverage these advancements to enhance the development and application of the systems pharmacology field. In this paper, we will review milestones in the evolution of mathematical biology and pharmacology models, highlight some of the gaps and challenges in developing and applying systems pharmacology models, and provide a vision for an integrated strategy that leverages advances in adjacent fields to overcome these challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.