Three host-guest systems have been characterized using surface tension (sigma), calorimetry, and molecular dynamics simulations (MD). The hosts were three native cyclodextrins (CD) and the guest the non-ionic carbohydrate surfactant octyl-beta-d-glucopyranoside. It is shown that, for any host-guest system, a rough screening of the most probable complex stoichiometries can be obtained in a model free form, using only calorimetric data. The sigma data were analyzed using a model that includes a newly proposed adsorption isotherm. The equilibrium constants for several stoichiometries were simultaneously obtained through fitting the sigma data. For alpha- and beta-CD, the predominant species is 1:1 and to a lesser extent 2:1, disregarding the existence of the 1:2. For gamma-CD, the 1:2 species dominates, the other two being also present. In an attempt to confirm these results, 10 ns MD simulations for each CD were performed using seven different starting conformations. The MD stable conformations agree with the results found from the experimental data. In one case, the spontaneous dissociation-formation of a complex was observed. Analysis of the trajectories indicates that hydrophobic interactions are primarily responsible for the formation and stability of the inclusion complexes. For the 2:1 species, intermolecular H-bonds between CD molecules result in a tight packed structure where their original truncated cone shape is lost in favor of a cylindrical geometry. Together, the results clearly demonstrate that the often used assumption of considering only a 1:1 species is inappropriate.
An extensive dynamic and structural characterization of the supramolecular complexes that can be formed by mixing α-, β-, and γ-cyclodextrin (CD) with sodium dodecyl sulfate (SDS) in water at 283, 298, and 323 K was performed by means of computational molecular dynamics simulations. For each CD at the three temperatures, seven different initial conformations were used, generating a total of 63 trajectories. The observed stoichiometries, intermolecular distances, and relative orientation of the individual molecules in the complexes, as well as the most important interactions which contribute to their stability and the role of the solvent water molecules were studied in detail, revealing clear differences and similarities between the three CDs. Earlier reported findings in the inclusion complexes field are also discussed in the context of the present results. For any of the three native cyclodextrins, the CD(2)SDS(1) species in the head-to-head conformation appears to be a promising building block for nanotubular aggregates both in the bulk and at the solution/air interface, as earlier suggested for the case of α-CD. Moreover, the observed noninclusion arrangements involving β-CD are proposed as the seed for the premicellar (β-CD)-induced aggregation of SDS described in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.