Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNAmediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.
Long non-coding (lnc)RNAs play key roles in many biological processes. Elucidating the function of lncRNAs in cell type specification during organ development requires knowledge about their expression in individual progenitor types rather than in whole tissues. To achieve this during cortical development, we used a dual-reporter mouse line to isolate coexisting proliferating neural stem cells, differentiating neurogenic progenitors and newborn neurons and assessed the expression of lncRNAs by paired-end, high-throughput sequencing. We identified 379 genomic loci encoding novel lncRNAs and performed a comprehensive assessment of cell-specific expression patterns for all, annotated and novel, lncRNAs described to date. Our study provides a powerful new resource for studying these elusive transcripts during stem cell commitment and neurogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.