The Italian peninsula is a biodiversity hotspot, with its freshwater fish fauna characterized by high levels of local endemism. Two endemic fluvio‐lacustrine fishes of the genus Barbus (barbel, family Cyprinidae) have allopatric distributions in the Tyrrhenian and Adriatic basins of Italy. Barbus plebejus inhabits the mid‐ to northern Adriatic basins, while B. tyberinus is widespread in all central‐northern basins draining into the Tyrrhenian Sea. For basins in Southern Italy draining into the southern parts of these seas, there remains a knowledge gap on their barbel populations due to no previous genetic and morphological studies, despite their apparent biogeographic isolation. Correspondingly, this study quantified the presence and distribution of barbels in the Adriatic and Tyrrhenian basins of Southern Italy through genetic and morphological analyses of 197 fish sampled across eight populations. Testing of how local isolation has influenced the evolution and persistence of these populations was completed by examining sequence variation at two mitochondrial loci (cytochrome b and D‐loop) and performing geometric morphometric analyses of body shape, plus measuring 11 morphometric and meristic characters. Phylogenetic and morphological analyses revealed the presence of two genetically distinct lineages that differed significantly from adjacent B. tyberinus and B. plebejus populations. These two new taxa, here described as SI1 and SI2 Barbus lineages, are highly structured and reflect a complex mosaic biogeographic pattern that is strongly associated with the underlying hydrographical scenarios of the basins. The geographic isolation of these basins thus has high evolutionary importance that has to be considered for maintaining endemism.
Italian freshwaters are highly biodiverse, with species present including the native fishes Barbus plebejus and Barbus tyberinus that are threatened by habitat alteration, fish stocking and invasive fishes, especially European barbel Barbus barbus. In central Italy, native fluvio-lacustrine barbels are mainly allopatric and so provide an excellent natural system to evaluate the permeability of the Apennine Mountains.Here, the morphologic and genetic distinctiveness was determined for 611 Barbus fishes collected along the Padany-Venetian (Adriatic basins; PV) and Tuscany-Latium (Tyrrhenian basins; TL) districts. Analyses of morphological traits and mitochondrial DNA sequence data explored the natural and anthropogenic factors that have shaped their distribution ranges. Over 100 alien B. barbus were recorded in the Tiber basin (TL district) and Metauro basin (PV district). Comparisons of genetic and morphometric data revealed that morphometric data could identify alien B. barbus from native Barbus, but could not differentiate between B. tyberinus and B. plebejus. Genetic analyses revealed ~50 D-loop mtDNA haplotypes and identified a distinct Barbus lineage present only in the Vomano River at the southern boundary of PV district. Demographic expansion and molecular variance analyses revealed a lack of geographic structuring across the sampling regions. While the contemporary B. plebejus distribution has been driven primarily by anthropogenic fish translocations, the dispersal of B. tyberinus has been via natural dispersion, including their crossing of the Apennine Mountains via temporary river connectivity. The results also revealed that the Barbus fishes of the mid-Adriatic region of Europe have a complex pattern of local endemism. To conserve these patterns of genetic uniqueness, especially in the mid-Adriatic basins, Barbus fishes should be managed by treating them as unique evolutionary units and ceasing translocations of all Barbus fishes between river basins. K E Y W O R D S Barbus, conservation, geometric morphometrics, mitochondrial DNA, native freshwater fish, river connectivity 290 | ZACCARA et Al.
Sediment flushing may be effective to tackle the loss of reservoir storage as a result of siltation. When operationally possible, the impact of this practice on the downstream aquatic environment can be mitigated by limiting the sediment concentration of the discharged waters (controlled sediment flushing). However, this topic is poorly documented, and concerns arise when limits are discussed. We present the results of a 3-year field investigation concerning the controlled sediment flushing of a small reservoir on the Adda River, the main tributary of Lake Como-Italy. Two limits for suspended solid concentration (SSC) were adopted: 1.5 g L À1 , as average value throughout the whole working day, and 3.0 g L À1 , as alert threshold to adjust the ongoing activity. These constraints were essentially fulfilled in the course of the documented operations. The first year sediment flushing was more significant than the following year: 25 000 tons of fines below 2 mm in diameter were flushed in six non-consecutive days in summer 2010, while, one year earlier, 75 000 tons were flushed in 16 non-consecutive days. In the third year of investigation (2011), no sediment evacuation took place. The benthic macroinvertebrate and the fish communities were surveyed a short distance below the reservoir, that is, in the potentially more affected river reach. Clear pieces of evidence of environmental quality degradation were not detected; the adopted strategies can therefore be considered to be appropriate when planning sediment flushing management in comparable contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.