This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) Ϸ500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.T he genomes of soil-and water-borne free-living bacteria have received relatively little attention thus far in comparison to pathogenic and extremophilic organisms, yet they provide fundamental insights into environmental adaptation strategies and represent a rich source of genes with biotechnological potential and medical utility. A particularly interesting organism of this kind is Chromobacterium violaceum, a Gram-negative -proteobacterium first described at the end of the 19th century (1), which dominates a variety of ecosystems in tropical and subtropical regions. This bacterium has been found to be highly abundant in the water and borders of the Negro river, a major component of the Brazilian Amazon (2) and as a result has been studied in Brazil over the last three decades. These, in general, have focused on the most notable product of the bacterium, the violacein pigment, which has already been introduced as a therapeutic compound for dermatological purposes (3). Violacein also exhibits antimicrobial activity against the important tropical pathogens Mycobacterium tuberculosis (4), Trypanosoma cruzi (5), and Leishmania sp. (6) and is reported to have other bactericidal (2, 7-10), antiviral (11), and anticancer (12, 13) activities.Some other aspects of the biotechnological potential of C. violaceum have also begun to be explored, including the synthesis of poly(3-hydroxyvaleric acid) homopolyester and other shortchain polyhydroxyalkanoates, which might represent alternatives to plastics derived from petrochemicals (14, 15), the hydrolysis of plastic films (16), and the solubilization of gold through a mercury-free process, thereby avoiding environmental contamination (17, 18). These studies, however, have been based on knowledge of only a tiny fraction of the genetic constitution of the organism. In addition, the more basic issues of the mechanisms and strategies underlying the adaptability of C. violaceum, including its observed but infrequent infection of h...
Most of the studies on air pollution focus on emissions from fossil fuel burning in urban centers. However, approximately half of the world's population is exposed to air pollution caused by biomass burning emissions. In the Brazilian Amazon population, over 10 million people are directly exposed to high levels of pollutants resulting from deforestation and agricultural fires. This work is the first study to present an integrated view of the effects of inhalable particles present in emissions of biomass burning. Exposing human lung cells to particulate matter smaller than 10 µm (PM10), significantly increased the level of reactive oxygen species (ROS), inflammatory cytokines, autophagy, and DNA damage. Continued PM10 exposure activated apoptosis and necrosis. Interestingly, retene, a polycyclic aromatic hydrocarbon present in PM10, is a potential compound for the effects of PM10, causing DNA damage and cell death. The PM10 concentrations observed during Amazon biomass burning were sufficient to induce severe adverse effects in human lung cells. Our study provides new data that will help elucidate the mechanism of PM10-mediated lung cancer development. In addition, the results of this study support the establishment of new guidelines for human health protection in regions strongly impacted by biomass burning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.