Since SARS-CoV-2-based disease (COVID-19) spreads as a pandemic, the necessity of a highly sensitive molecular diagnosis that can drastically reduce false negatives reverse transcription PCR (rtPCR) results, raises as a major clinical need. Here we evaluated the performance of a ddPCR-based assay to quantify SARS-CoV-2 titer in 55 suspected COVID-19 cases with negative rtPCR results thanks to in-house ddPCR assay (targeting RdRp and host RNaseP). Samples were collected at ASST-GOM Niguarda between February and May 2020 at hospital admission. Clinical and imaging data were obtained for clinical staging and definition of disease severity. Patients were mainly female (45.5%) with a median age of 73 (57-84) years. ddPCR-based assay detected SARS-CoV-2 genome in nasopharyngeal samples of 19 (34.5%) patients (median viral-load: 128 copies/mL, IQR: 72-345). In 15 of them (78.9%), chest CT showed a classical COVID-19 bilateral interstitial pneumonia; 14 patients (73.7%) showed severe COVID-19 manifestations. ddPCR did not identify any trace of SARS-CoV-2 genome in the respiratory samples of the remaining 36 patients. The serological assay performed in a subgroup of 34 patients at the later stage of illness (from 3 days to 90 days after) confirmed the presence of SARS-CoV-2 antibodies in all patients tested positive for SARS-CoV-2 in ddPCR (100%). Contrariwise, negative tests were observed in 95.0% ddPCR negative patients (P<0.001). Thanks to a ddPCR-based assay, we achieved a rapid and accurate SARS-CoV-2 diagnosis in rtPCR-negative respiratory
From February to April 2020, Lombardy (Italy) reported the highest numbers of SARS-CoV-2 cases worldwide. By analyzing 346 whole SARS-CoV-2 genomes, we demonstrate the presence of seven viral lineages in Lombardy, frequently sustained by local transmission chains and at least two likely to have originated in Italy. Six single nucleotide polymorphisms (five of them non-synonymous) characterized the SARS-CoV-2 sequences, none of them affecting N-glycosylation sites. The seven lineages, and the presence of local transmission clusters within three of them, revealed that sustained community transmission was underway before the first COVID-19 case had been detected in Lombardy.
Background
Recent studies showed that plasma SARS-CoV-2 RNA seems to be associated with worse COVID-19 outcome. However, whether specific population can be at higher risk of viremia are to date unexplored.
Methods
This cross-sectional proof-of-concept study included 41 SARS-CoV-2-positive adult individuals (six affected by haematological malignancies) hospitalized at two major hospital in Milan, for those demographic, clinical and laboratory data were available. SARS-CoV-2 load was quantified by ddPCR in paired plasma and respiratory samples. To assess significant differences between patients with and patients without viremia, Fisher exact test and Wilcoxon test were used for categorical and continuous variables, respectively.
Results
Plasma SARS-CoV-2 RNA was found in 8 patients (19.5%), with a median (IQR) value of 694 (209–1023) copies/mL. Viremic patients were characterized by an higher mortality rate (50.0% vs 9.1%; p = 0.018) respect to patients without viremia. Viremic patients were more frequently affected by haematological malignancies (62.5% vs. 3.0%; p < 0.001), and had higher viral load in respiratory samples (9,404,000 [586,060-10,000,000] vs 1560 [312–25,160] copies/mL; p = 0.002).
Conclusions
Even if based on a small sample population, this proof-of-concept study poses the basis for an early identification of patients at higher risk of SARS-CoV-2 viremia, and therefore likely to develop severe COVID-19, and supports the need of a quantitative viral load determination in blood and respiratory samples of haematologic patients with COVID-19 in order to predict prognosis and consequently to help their further management.
From February to April, 2020, Lombardy (Italy) was the area who worldwide registered the highest numbers of SARS-CoV-2 infection. By extensively analyzing 346 whole SARS-CoV-2 genomes, we demonstrated the simultaneous circulation in Lombardy of two major viral lineages, likely derived from multiple introductions, occurring since the second half of January. Seven single nucleotide polymorphisms (five of them non-synonymous) characterized the SARS-CoV-2 sequences, none of them affecting N-glycosylation sites. These two lineages, and the presence of two well defined clusters inside Lineage 1, revealed that a sustained community transmission was ongoing way before the first COVID-19 case found in Lombardy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.