We investigate the role of axial ligands on the near-IR-optical and paramagnetic NMR spectra of the complex [YbL](+3) where L is the stereodefined enantiopure chiral macrocycle (L = hexaazapentacyclo[25.3.1.1(12,24).0(4,9).0(19,24)]dotriaconta-1(31),2,10,12,14,16(32),17,25,27,29-decaene). The conformation in solution of the lanthanide complex is characterized by analyzing the pseudocontact 1H NMR shifts and is consistent with X-ray data of single crystal of analogue systems. The macrocycle is confined within a thin equatorial disk, leaving the cation open to at least two axial sites, on the opposite hemispheres. We recorded, assigned, and analyzed the 1H NMR spectra of several species upon changing the anion in solution, calculating the magnetic susceptibility anisotropy tensor for each. Near-IR circular dichroism is used to investigate the solution equilibria involving the competing ligands and to derive a spectroscopic series for Yb.
The interaction between quercetin, a popular antioxidant flavonoid, and human serum albumin (HSA) is investigated and characterized by means of induced circular dichroism and saturation transfer difference NMR. These techiques demonstrate the reversible binding of quercetin to the carrier protein, which is responsible for its dissolution in aqueous medium. Competition experiments with two classical probes for HSA binding sites, namely Ibuprofen and Warfarin (a common anticoagulant coumarin), demonstrate that quercetin has a primary binding site located in the subdomain IIA, where coumarins are hosted. The affinity for this site is large and we found that quercetin may effectively displace warfarin from HSA. This may have relevant consequences in rationalizing the interferences of common dietary compounds and food supplements to anticoagulant treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.