The incorporation of [1-13 C]-and [2,3,4,5-13 C 4 ]1-deoxy-D-xylulose into -carotene, lutein, phytol, and sitosterol in a cell culture of Catharanthus roseus was analyzed by NMR spectroscopy. The labeling patterns of the isoprene precursors, isopentenyl pyrophosphate and dimethylallyl pyrophosphate, were obtained from the terpenes by a retrobiosynthetic approach. 13 C Enrichment and 13 C 13 C coupling patterns showed conclusively that 1-deoxy-D-xylulose and not mevalonate is the predominant isoprenoid precursor of phytol, -carotene, and lutein. Label from 1-deoxyxylulose was also diverted to phytosterols to a minor extent (6% relative to carotene and phytol formation). The data demonstrate that the formation of isopentenyl pyrophosphate from pentulose occurs strictly by an intramolecular rearrangement process.
2-C-methylerythritol 4-phosphate has been established recently as an intermediate of the deoxyxylulose phosphate pathway used for biosynthesis of terpenoids in plants and in many microorganisms.We show that an enzyme isolated from cell extract of Escherichia coli converts 2-C-methylerythritol 4-phosphate into 4-diphosphocytidyl-2-C-methylerythritol by reaction with CTP. The enzyme is specified by the hitherto unannotated ORF ygbP of E. coli. The cognate protein was obtained in pure form from a recombinant hyperexpression strain of E. coli harboring a plasmid with the ygbP gene under the control of a T5 promoter and lac operator. By using the recombinant enzyme, 4-diphosphocytidyl-[2-14 C]2-C-methylerythritol was prepared from [2-14 C]2-C-methylerythritol 4-phosphate. The radiolabeled 4-diphosphocytidyl-2-C-methylerythritol was shown to be efficiently incorporated into carotenoids by isolated chromoplasts of Capsicum annuum. The E. coli ygbP gene appears to be part of a small operon also comprising the unannotated ygbB gene. Genes with similarity to ygbP and ygbB are present in the genomes of many microorganisms, and their occurrence appears to be correlated with that of the deoxyxylulose pathway of terpenoid biosynthesis. Moreover, several microorganisms have genes specifying putative fusion proteins with ygbP and ygbB domains, suggesting that both the YgbP protein and the YgbB protein are involved in the deoxyxylulose pathway. A gene from Arabidopsis thaliana with similarity to ygbP carries a putative plastid import sequence, which is well in line with the assumed localization of the deoxyxylulose pathway in the plastid compartment of plants.
From the data it must be concluded that the deuterium atom in position 3 of deoxyxylulose was incorporated into both isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate with a rate of 75% (with respect to the internal 13 C label). The detected stereochemical signature implies that the label is located preferentially in the (E)-hydrogen atom of IPP. This preferential labeling, in turn, rules out dimethylallyl pyrophosphate as the compulsory precursor of IPP. In the experiment with [2-13 C,4-2 H]1-deoxyxylulose, the 13 C label was efficiently transferred to the terpenoids whereas the 2 H label was completely washed out, most probably after IPP formation as a consequence of the isomerization and elongation process. In addition, the data cast light on the stereochemical course of the dehydrogenation and cyclization steps involved in the biosynthesis of lutein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.