Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.
Pancytopenia, hyperpigmentation, small stature, congenital abnormalities, and predisposition to neoplasia characterize Fanconi anemia (FA). The clinical phenotype is extremely variable, therefore the diagnosis is frequently delayed until the pancytopenia appears, making diagnosis difficult on the basis of clinical manifestations alone. Hypersensitivity of FA cells to the clastogenic effect of diepoxybutane (DEB) provides a unique marker for the diagnosis before the beginning of hematological manifestations. Our aim in this study was to detect FA in children with atypical manifestations to define which conditions should be routinely included in the DEB test screening. We performed the chromosomal breakage test in 34 patients with probable FA and 83 patients with clinical conditions that could suggest FA, but are not usually screened by the DEB test: 20 patients with aplastic anemia, 20 patients with VACTERL association, 20 with radial ray abnormalities, 7 with tracheo-esophageal fistulae, 12 with anal atresia, and 4 with myelodysplastic syndrome. We found 18 DEBpositive patients: 12 were in the group of probable FA and 6 in the other groups. Among the last ones: three were included because of aplastic anemia, without any other sign of FA, however when re-examined, other anomalies were detected. The third patient had anal atresia, renal hypoplasia, pre-axial polydactyly, and normal blood cell counts and was diagnosed as having VAC-TERL association. The other two patients lacking physical or hematological signs were identified among the group of radial ray abnormalities. Thus, our results highlight the need to increase the number of abnormalities indicating need for a DEB test. Delay in the diagnosis of FA may have serious consequences for the patients and their family members. ß
Advances in cancer treatment have led to an increase in patient survival. However, exposure to genotoxic chemotherapeutic agents and ionizing radiation may induce persistent genetic damage in cancer survivors. In this study, we detected genomic instability in chromosomes of peripheral blood lymphocytes from Hodgkin lymphoma patients, 2–17 years after MOPP (nitrogen mustard, Oncovin, procarbazine, and prednisone) chemotherapy with or without radiotherapy. Samples were obtained from 11 healthy individuals, 5 pretreatment patients, and 20 posttreatment patients. Cytogenetic analysis with GTG banding was performed on 1,000 lymphocyte metaphases per donor to identify genomic instability, including numerical and structural chromosomal aberrations, at a resolution of 10 Mb across the entire genome. Our results showed that anticancer treatment did not induce significant differences in the frequency of aneuploidy among the three study groups. However, 1 of the 11 healthy individuals, and 13 of the 20 posttreatment patients had a high frequency of chromosomal breaks and gross chromosomal rearrangements. The types of aberrations observed were random and complex, consistent with persistent genomic instability that was induced by cancer treatment. Clonal expansion of cells with chromosomal lesions was observed in one posttreatment patient only. These findings show that anticancer treatments induce persistent genomic instability, but not aneuploidy. Chemotherapy may affect genes with a role in DNA damage surveillance or repair, which in turn allows the accumulation of nontargeted structural chromosomal damage in future generations of cells. This genomic instability may facilitate the development of second malignancies in Hodgkin lymphoma survivors. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.