Recent advances have shown impressive results by anti-interleukin 1 (IL-1) agents in refractory idiopathic recurrent pericarditis. Purpose of ReviewWe critically discuss the current state of the art of therapy of relapsing pericarditis, with a focus on new pharmacological approaches and on specific clinical settings such as pregnancy, pediatric patients, and secondary forms of relapsing pericarditis. Recent FindingsAntagonism of the IL-1 is highly effective in idiopathic recurrent pericarditis with autoinflammatory features. Currently, available anti-IL-1 agents are anakinra and canakinumab. Rilonacept is another IL-1 antagonist, currently studied in the phase-3 clinical trial RHAPSODY. Available data suggest similar efficacy and safety profiles of these three agents, although only anakinra has been tested in randomized clinical trials. These agents have slightly different pharmacological properties, being canakinumab a specific IL-1ß antagonist while anakinra and rilonacept are unselective IL-1α and IL-1ß blockers. To date, there is no evidence that specificity against IL-1ß affects safety and efficacy in patients with relapsing pericarditis, although it has been proposed that unspecific blockage might be useful in severe disease. Summary Anakinra is the first anti-IL-1 agent with well-documented efficacy and safety in adult and pediatric patients with idiopathic relapsing pericarditis. Other anti-IL-1 agents are currently under study. Future research should clarify the optimal duration of therapy and tapering schedule of treatment with these agents. Moreover, biomarkers would be required to understand which patients will benefit from early administration of IL-1 blockers due to refractoriness to conventional therapy and which others will suffer from recurrences during the tapering of these agents. Lastly, future studies should focus on the subjects with the autoimmune or the pauci-inflammatory phenotype of idiopathic refractory pericarditis.
The published experience with biologics in childbearing age with autoimmune and inflammatory diseases mainly deals with the use of TNFα inhibitors (TNFα-i). Limited data are available for biologics targeting other cytokines or immunocompetent cells, especially for the inflammasome targeted therapy including IL-1 inhibitors and colchicine. We conducted a nested case-control study by using the US Food and Drug Administration Adverse Event Reporting System database aimed at quantifying the association between the use of IL-1 inhibitors/colchicine in pregnant women and the occurrence of maternal/fetal adverse effects. The reporting odds ratio was used as a measure of disproportional reporting. From the total cohort (40,033 pregnant women), we retrieved 7,620 reports related to neonatal AEs, 2,889 to fetal disorders, 8,364 to abortion, 8,787 to congenital disorders, and 7,937 to labor/delivery complications. Inflammasome-targeted drugs did not present any disproportionate reporting for all these clusters of AEs. TNFα-i confirmed their safety during pregnancy with aROR < 1 for all clusters of AEs except for labor complications. Finally, we performed a systematic review of the current literature. Data from the eligible studies (12 observational studies and 6 case reports; yielding a total of 2,075 patients) were reassuring. We found no major safety issues on malformations risk of inflammasome targeted therapies in pregnancy. However, due to limited data, the routine use of these agents should be considered in pregnancy only if risk benefit assessment justifies the potential risk to the fetus.
All rights reserved. No reuse allowed without permission.
In theory, human diseases in which a specific cell type degenerates, such as neurodegenerative diseases, can be therapeutically addressed by replacement of the lost cells. The classical strategy for cell replacement is exogenous cell transplantation, but now, cell replacement can also be achieved with in situ reprogramming. Indeed, many of these disorders are age-dependent, and "rejuvenating" strategies based on cell epigenetic modifications are a possible approach to counteract disease progression. In this context, transient and/or partial reprogramming of adult somatic cells towards pluripotency can be a promising tool for neuroregeneration. Temporary and controlled in vivo overexpression of Yamanaka reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc (OSKM)) has been proven feasible in different experimental settings and could be employed to facilitate in situ tissue regeneration; this regeneration can be accomplished either by producing novel stem/precursor cells, without the challenges posed by exogenous cell transplantation, or by changing the epigenetic adult cell signature to the signature of a younger cell. The risk of this procedure resides in the possible lack of perfect control of the process, carrying a potential oncogenic or unexpected cell phenotype hazard. Recent studies have suggested that these limits can be overcome by a tightly controlled cyclic regimen of short-term OSKM expression in vivo that prevents full reprogramming to the pluripotent state and avoids both tumorigenesis and the presence of unwanted undifferentiated cells. On the other hand, this strategy can enhance tissue regeneration for therapeutic purposes in aging-related neurological diseases as well. These data could open the path to further research on the therapeutic potential of in vivo reprogramming in regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.