Ligands of the 3‐hydroxy‐4‐pyridinone (3,4‐HPO) class were considered eligible to formulate new Fe fertilizers for Iron Deficiency Chlorosis (IDC). Soybean (Glycine max L.) plants grown in hydroponic conditions and supplemented with Fe‐chelate [Fe(mpp)3] were significantly greener, had increased biomass, and were able to translocate more iron from the roots to the shoots than those supplemented with an equal amount of the commercially available chelate [FeEDDHA]. To understand the influence of the structure of 3,4‐HPO ligand on the role of the Fe‐chelate to improve Fe‐uptake, we investigated and report here the effect of Fe‐chelates ([Fe(mpp)3], [Fe(dmpp)3], and [Fe(etpp)3]) in addressing IDC. Chlorosis development was assessed by measurement of morphological parameters, quantification of chlorophyll and Fe, and other micronutrient contents, as well as measurement of enzymatic activity (FCR) and gene expression (FRO2, IRT1, and Ferritin). All [Fe(3,4‐HPO)3] chelates were able to provide Fe to plants and prevent IDC but with a different efficiency depending on the ligand. We hypothesize that this may be related with the distinct physicochemical characteristics of ligands and complexes, namely, the diverse hydrophilic–lipophilic balance of the three chelates. To test the hypothesis, we performed an EPR biophysical study using liposomes prepared from a soybean (Glycine3 max L.) lipid extract and spin probes. The results showed that the most effective chelate [Fe(mpp)3] shows a preferential location close to the surface while the others prefer the hydrophobic region inside the bilayer.
Significance statement
The 3‐hydroxy‐4‐pyridinone Fe‐chelates, [Fe(mpp)3], [Fe(dmpp)3], and [Fe(etpp)3], were all able to provide Fe to plants and prevent IDC. Efficacy is dependent on the structure of the ligand. From an EPR biophysical study using spin probes and liposomes, prepared from a soybean lipid extract, we hypothesize that this may be related with the distinct preferential location close to the surface or on the hydrophobic region of the lipid bilayer. [Fe(mpp)3] provide higher amounts of Fe in the leaves.
Functionalization of xanthene fluorophores with specific receptor units is an important topic of research aiming for the development of new analytical tools for biological sciences, clinical diagnosis, food and environmental monitoring. Herein, we report a new dihydrorosamine containing two active amino groups, which was functionalized with 3-benzyloxy-1-(3′-carboxypropyl)-2-methyl-4-pyridinone through an amide coupling strategy. Benzylated mono- and di-functionalized dihydrorosamine derivatives (H in position 9 of the xanthene) were obtained, but with modest reaction yields, requiring long and laborious purification procedures. Looking for a more efficient approach, rhodamine 110 was selected to react with the carboxypropyl pyridinone, enabling the isolation of the corresponding mono- and di-functionalized derivatives in amounts that depend on the excess of pyridinone added to the reaction. The structure of all compounds was established by 1H and 13C NMR, MS (ESI) and their absorption and emission properties were evaluated in dichloromethane. The fluorescence behavior of the debenzylated mono-rhodamine 110 derivative in the presence of Fe(III) was studied, making it an interesting fluorogenic dye for future optical sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.