Abstract. The COordinated Regional Downscaling EXperiment (CORDEX) is a diagnostic model intercomparison project (MIP) in CMIP6. CORDEX builds on a foundation of previous downscaling intercomparison projects to provide a common framework for downscaling activities around the world. The CORDEX Regional Challenges provide a focus for downscaling research and a basis for making use of CMIP6 global climate model (GCM) output to produce downscaled projected changes in regional climates and assess sources of uncertainties in the projections, all of which can potentially be distilled into climate change information for vulnerability, impacts and adaptation studies. CORDEX Flagship Pilot Studies advance regional downscaling by targeting one or more of the CORDEX Regional Challenges. A CORDEX-CORE framework is planned that will produce a baseline set of homogeneous high-resolution, downscaled projections for regions worldwide. In CMIP6, CORDEX coordinates with ScenarioMIP and is structured to allow cross comparisons with HighResMIP and interaction with the CMIP6 VIACS Advisory Board.
Two questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.44°) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only, ~15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (~47% under RCP4.5, ~49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.
The capability of a set of 7 coordinated regional climate model simulations performed in the framework of the CLARIS-LPB Project in reproducing the mean climate conditions over the South American continent has been evaluated. The model simulations were forced by the ERA-Interim reanalysis dataset for the period 1990–2008 on a grid resolution of 50 km, following the CORDEX protocol. The analysis was focused on evaluating the reliability of simulating mean precipitation and surface air temperature, which are the variables most commonly used for impact studies. Both the common features and the differences among individual models have been evaluated and compared against several observational datasets. In this study the ensemble bias and the degree of agreement among individual models have been quantified. The evaluation was focused on the seasonal means, the area-averaged annual cycles and the frequency distributions of monthly means over target sub-regions. Results show that the Regional Climate Model ensemble reproduces adequately well these features, with biases mostly within ±2 °C and ±20 % for temperature and precipitation, respectively. However, the multi-model ensemble depicts larger biases and larger uncertainty (as defined by the standard deviation of the models) over tropical regions compared with subtropical regions. Though some systematic biases were detected particularly over the La Plata Basin region, such as underestimation of rainfall during winter months and overestimation of temperature during summer months, every model shares a similar behavior and, consequently, the uncertainty in simulating current climate conditions is low. Every model is able to capture the variety in the shape of the frequency distribution for both temperature and precipitation along the South American continent. Differences among individual models and observations revealed the nature of individual model biases, showing either a shift in the distribution or an overestimation or underestimation of the range of variability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.