In this work we prove a Paley-Wiener theorem for the spherical transform associated to the generalized Gelfand pair $(H_n\ltimes U(p,q),H_n)$, where $H_n$ is the $2n+1$-dimensional Heisenberg group. In particular, by using the identification of the spectrum of $(U(p,q),H_n)$ with a subset $\Sigma$ of $\mathbb{R}^2$, we prove that the restrictions of the spherical transforms of functions in $C_{0}^{\infty}(H_n)$ to appropriated subsets of $\Sigma$, can be extended to holomorphic functions on $\mathbb{C}^2$. Also, we obtain a real variable characterizations of such transforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.